1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
#' @title Keep only one row from all with duplicated IDs
#'
#' @description From all rows with at least one duplicated ID,
#' keep only one. Methods for selecting the duplicated row are
#' either the first duplicate, the last duplicate, or the "best"
#' duplicate (default), based on the duplicate with the smallest
#' number of `NA`. In case of ties, it picks the first
#' duplicate, as it is the one most likely to be valid and
#' authentic, given practice effects.
#'
#' Contrarily to `dplyr::distinct()`, `data_unique()` keeps all columns.
#'
#' @param keep The method to be used for duplicate selection, either "best"
#' (the default), "first", or "last".
#' @inheritParams extract_column_names
#'
#' @return A data frame, containing only the chosen duplicates.
#' @seealso [data_duplicated()]
#' @examples
#' df1 <- data.frame(
#' id = c(1, 2, 3, 1, 3),
#' item1 = c(NA, 1, 1, 2, 3),
#' item2 = c(NA, 1, 1, 2, 3),
#' item3 = c(NA, 1, 1, 2, 3)
#' )
#'
#' data_unique(df1, select = "id")
#' @export
data_unique <- function(data,
select = NULL,
keep = "best",
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE) {
UseMethod("data_unique")
}
#' @export
data_unique.data.frame <- function(data,
select = NULL,
keep = "best",
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE) {
select <- .select_nse(
select,
data,
exclude = exclude,
ignore_case = ignore_case,
regex = regex,
verbose = verbose
)
# temporary_id <- paste0(sample(letters), collapse = "")
data$temporary_id2 <- do.call(paste, c(data_select(data, select), sep = "_"))
og.names <- names(data)
dups <- data_duplicated(data, select)
# if no duplicates, return the original data
if (nrow(dups) == 0L) {
data <- data_remove(data, "temporary_id2")
return(data)
}
# count number of duplicates
dups.n <- sum(duplicated(dups$temporary_id2))
good.dups <- data_group(dups, "temporary_id2")
# keep row that has the least duplicates
if (keep == "best") {
good.dups <- data_filter(good.dups, "count_na == min(count_na)")
}
good.dups <- good.dups[!duplicated(good.dups$temporary_id2,
fromLast = keep == "last"
), ]
good.dups <- data_select(good.dups, og.names)
out <- data[!duplicated(data$temporary_id2), ]
if (keep != "first") {
match.index <- out$temporary_id2 %in% good.dups$temporary_id2
out[match.index, ] <- good.dups
}
# id is not useful anymore
out <- data_remove(out, "temporary_id2")
if (verbose) {
dup.msg <- sprintf("(%s duplicates removed, with method '%s')", dups.n, keep)
dup.msg <- paste0(dup.msg, ifelse(dups.n != 69, "", " 69... nice"))
insight::format_alert(dup.msg)
}
out
}
#' @export
data_unique.grouped_df <- function(data,
select = NULL,
keep = "best",
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE) {
select <- .select_nse(
select,
data,
exclude = exclude,
ignore_case = ignore_case,
regex = regex,
verbose = verbose
)
grps <- attr(data, "groups", exact = TRUE)
grps <- grps[[".rows"]]
data2 <- data_ungroup(data)
out <- lapply(grps, function(x) {
data_unique.data.frame(data2[x, ], select = select, keep = keep, verbose = verbose)
})
out <- do.call(rbind, out)
if (!insight::object_has_rownames(data)) {
rownames(out) <- NULL
}
class(out) <- class(data)
attr(out, "groups") <- attr(data, "groups")
out
}
|