1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
|
# helper to compute crosstables --------------
.crosstable <- function(x,
by,
weights = NULL,
remove_na = FALSE,
proportions = NULL,
obj_name = NULL,
group_variable = NULL) {
if (!is.null(proportions)) {
proportions <- match.arg(proportions, c("row", "column", "full"))
}
# frequency table
if (is.null(weights)) {
# we have a `.default` and a `.data.frame` method for `data_tabulate()`.
# since this is the default, `x` can be an object which cannot be used
# with `table()`, that's why we add `tryCatch()` here. Below we give an
# informative error message for non-supported objects.
if (remove_na) {
x_table <- tryCatch(table(x, by), error = function(e) NULL)
} else {
x_table <- tryCatch(table(addNA(x), addNA(by)), error = function(e) NULL)
}
} else if (remove_na) {
# weighted frequency table, excluding NA
x_table <- tryCatch(
stats::xtabs(
weights ~ x + by,
data = data.frame(weights = weights, x = x, by = by),
na.action = stats::na.omit,
addNA = FALSE
),
error = function(e) NULL
)
} else {
# weighted frequency table, including NA
x_table <- tryCatch(
stats::xtabs(
weights ~ x + by,
data = data.frame(weights = weights, x = addNA(x), by = addNA(by)),
na.action = stats::na.pass,
addNA = TRUE
),
error = function(e) NULL
)
}
if (is.null(x_table)) {
insight::format_warning(paste0("Can't compute cross tables for objects of class `", class(x)[1], "`."))
return(NULL)
}
out <- as.data.frame(stats::ftable(x_table))
colnames(out) <- c("Value", "by", "N")
total_n <- sum(out$N, na.rm = TRUE)
# we want to round N for weighted frequencies
if (!is.null(weights)) {
out$N <- round(out$N)
total_n <- round(total_n)
}
out <- data_to_wide(out, values_from = "N", names_from = "by")
# use variable name as column name
if (!is.null(obj_name)) {
colnames(out)[1] <- obj_name
}
# for grouped data frames, add info about grouping variables
if (!is.null(group_variable)) {
var_info <- toString(lapply(colnames(group_variable), function(i) {
sprintf("%s (%s)", i, group_variable[[i]])
}))
out <- cbind(out[1], data.frame(Group = var_info, stringsAsFactors = FALSE), out[-1])
}
attr(out, "total_n") <- total_n
attr(out, "weights") <- weights
attr(out, "proportions") <- proportions
attr(out, "varname") <- obj_name
class(out) <- c("datawizard_crosstab", "data.frame")
out
}
# methods ---------------------
#' @export
format.datawizard_crosstab <- function(x,
format = "text",
digits = 1,
big_mark = NULL,
include_total_row = TRUE,
...) {
# convert to character manually, else, for large numbers,
# format_table() returns scientific notation
x <- as.data.frame(x)
# find numeric columns, only for these we need row/column sums
numeric_columns <- vapply(x, is.numeric, logical(1))
# compute total N for rows and columns
total_n <- attributes(x)$total_n
total_column <- rowSums(x[numeric_columns], na.rm = TRUE)
total_row <- c(colSums(x[numeric_columns], na.rm = TRUE), total_n)
# proportions?
props <- attributes(x)$proportions
if (!is.null(props)) {
# we copy x to tmp, because when we create strings with "sprintf()", the
# variable is coerced to character, and in subsequent iterations of the loop,
# mathemathical operations are not possible anymore
tmp <- x
if (identical(props, "row")) {
for (i in seq_len(nrow(x))) {
row_sum <- sum(x[i, numeric_columns], na.rm = TRUE)
if (row_sum == 0) {
row_sum_string <- "(0%)"
} else {
row_sum_string <- sprintf("(%.*f%%)", digits, 100 * x[i, numeric_columns] / row_sum)
}
tmp[i, numeric_columns] <- paste(format(x[i, numeric_columns]), format(row_sum_string, justify = "right"))
}
} else if (identical(props, "column")) {
for (i in seq_len(ncol(x))[numeric_columns]) {
col_sum <- sum(x[, i], na.rm = TRUE)
if (col_sum == 0) {
col_sum_string <- "(0%)"
} else {
col_sum_string <- sprintf("(%.*f%%)", digits, 100 * x[, i] / col_sum)
}
tmp[, i] <- paste(format(x[, i]), format(col_sum_string, justify = "right"))
}
} else if (identical(props, "full")) {
for (i in seq_len(ncol(x))[numeric_columns]) {
tmp[, i] <- paste(
format(x[, i]),
format(sprintf("(%.*f%%)", digits, 100 * x[, i] / total_n), justify = "right")
)
}
}
# copy back final result
x <- tmp
}
x[] <- lapply(x, as.character)
# format data frame
ftab <- insight::format_table(x, ...)
# replace empty cells with NA
ftab[] <- lapply(ftab, function(i) {
i[i == ""] <- ifelse(identical(format, "text"), "<NA>", "(NA)") # nolint
i
})
# Remove ".00" from numbers
ftab$Total <- gsub("\\.00$", "", as.character(total_column))
# add final total row to each sub-table. For multiple, collapsed table
# (i.e. when length of `by` > 1), we don't want multiple total rows in the
# table, so we would set include_total_row = FALSE for objects of class
# `datawizard_crosstabs` (note plural s!)
if (include_total_row) {
# for text format, insert "empty row" before last total row
if (identical(format, "text") || identical(format, "markdown")) {
empty_row <- as.data.frame(t(data.frame(
rep("", ncol(ftab)),
c("Total", as.character(total_row)),
stringsAsFactors = FALSE
)))
} else {
empty_row <- as.data.frame(t(data.frame(
c("Total", as.character(total_row)),
stringsAsFactors = FALSE
)))
}
colnames(empty_row) <- colnames(ftab)
ftab <- rbind(ftab, empty_row)
ftab[nrow(ftab), ] <- gsub("\\.00$", "", ftab[nrow(ftab), ])
}
# insert big marks?
ftab$Total <- .add_commas_in_numbers(ftab$Total, big_mark)
ftab[nrow(ftab), ] <- .add_commas_in_numbers(ftab[nrow(ftab), ], big_mark)
# also format NA column name
colnames(ftab)[colnames(ftab) == "NA"] <- ifelse(identical(format, "text"), "<NA>", "(NA)")
ftab
}
# print, datawizard_crosstab ---------------------
#' @export
print.datawizard_crosstab <- function(x, big_mark = NULL, ...) {
.print_text_table(x, big_mark, format = "text", ...)
invisible(x)
}
#' @export
print_md.datawizard_crosstab <- function(x, big_mark = NULL, ...) {
.print_text_table(x, big_mark, format = "markdown", ...)
}
#' @export
print_html.datawizard_crosstab <- function(x, big_mark = NULL, ...) {
.print_text_table(x, big_mark, format = "html", ...)
}
.print_text_table <- function(x, big_mark = NULL, format = "text", ...) {
# grouped data? if yes, add information on grouping factor
if (is.null(x[["Group"]])) {
caption <- NULL
} else {
caption <- paste0("Grouped by ", x[["Group"]][1])
x$Group <- NULL
}
# prepare table arguments
fun_args <- list(
format(x, big_mark = big_mark, format = format, ...),
caption = caption,
format = format
)
if (format != "html") {
fun_args$cross <- "+"
fun_args$empty_line <- "-"
}
if (format == "text") {
fun_args$missing <- "<NA>"
} else {
fun_args$missing <- "(NA)"
}
out <- do.call(insight::export_table, c(fun_args, list(...)))
# print table
if (identical(format, "text")) {
cat(out)
} else {
out
}
}
# print, datawizard_crosstabs ---------------------
#' @export
print.datawizard_crosstabs <- function(x, big_mark = NULL, ...) {
.print_text_tables(x, big_mark, format = "text", ...)
invisible(x)
}
#' @export
print_md.datawizard_crosstabs <- function(x, big_mark = NULL, ...) {
.print_text_tables(x, big_mark, format = "markdown", ...)
}
#' @export
print_html.datawizard_crosstabs <- function(x, big_mark = NULL, ...) {
.print_text_tables(x, big_mark, format = "html", ...)
}
.print_text_tables <- function(x, big_mark = NULL, format = "text", ...) {
if (length(x) == 1) {
.print_text_table(x[[1]], big_mark = big_mark, format = format, ...)
} else {
x <- lapply(x, function(i) {
# grouped data? if yes, add information on grouping factor
if (!is.null(i[["Group"]])) {
i$groups <- paste0("Grouped by ", i[["Group"]][1])
i$Group <- NULL
}
# if we don't have the gt-grouping variable "groups" yet, we use it now
# for grouping. Else, we use a new column named "Variable", to avoid
# overwriting the groups-variable from grouped data frames
if (is.null(i$groups) && identical(format, "html")) {
grp_variable <- "groups"
} else {
grp_variable <- "Variable"
}
# first variable differs for each data frame, so we harmonize it here
i[[grp_variable]] <- colnames(i)[1]
colnames(i)[1] <- "Value"
# move column to first position
i <- data_relocate(i, select = grp_variable, before = 1)
# format data frame
format(i, format = format, big_mark = big_mark, include_total_row = FALSE, ...)
})
# now bind, but we need to check for equal number of columns
if (all(lengths(x) == max(length(x)))) {
out <- do.call(rbind, x)
} else {
# if not all tables have identical columns, we can use "data_merge()",
# which safely row-binds all data frames. However, the column order can be
# messed up, so we save column order here and restore it later
col_order <- colnames(x[[which.max(lengths(x))]])
out <- data_merge(x, join = "bind")[col_order]
}
# split tables for grouped data frames
if (!is.null(out$groups)) {
out <- split(out, out$groups)
out <- lapply(out, function(subtable) {
# for text and markdown, if we split tables, we remove the "groups"
# variable. we need to keep it for HTML tables.
if (!identical(format, "html")) {
attr(subtable, "table_caption") <- c(unique(subtable$groups), "blue")
subtable$groups <- NULL
}
# remove duplicated names
for (grpvars in c("Variable", "Group")) {
if (!is.null(subtable[[grpvars]])) {
subtable[[grpvars]][duplicated(subtable[[grpvars]])] <- ""
}
}
subtable
})
# no splitting of grouped data frames into list for HTML format,
# because splitting is done by the `by` argument later
if (identical(format, "html")) {
out <- do.call(rbind, out)
}
}
# prepare table arguments
fun_args <- list(
out,
format = format,
by = "groups"
)
if (format != "html") {
fun_args$cross <- "+"
fun_args$empty_line <- "-"
}
if (format == "text") {
fun_args$missing <- "<NA>"
} else {
fun_args$missing <- "(NA)"
}
out <- do.call(insight::export_table, c(fun_args, list(...)))
# print table
if (identical(format, "text")) {
cat(out)
} else {
out
}
}
}
# helper ---------------------
.validate_by <- function(by, x) {
if (!is.null(by)) {
if (is.character(by)) {
# If "by" is a character string, must be of length 1
if (length(by) > 1) {
insight::format_error(
"If `by` is a string indicating a variable name, `by` must be of length 1.",
"You may use `data_group()` to group by multiple variables, then call `data_tabulate()`."
)
}
# if "by" is a character, "x" must be a data frame
if (!is.data.frame(x)) {
insight::format_error("If `by` is a string indicating a variable name, `x` must be a data frame.")
}
# is "by" a column in "x"?
if (!by %in% colnames(x)) {
insight::format_error(sprintf(
"The variable specified in `by` was not found in `x`. %s",
.misspelled_string(names(x), by, "Possibly misspelled?")
))
}
by <- x[[by]]
}
# is "by" of same length as "x"?
if (is.data.frame(x) && length(by) != nrow(x)) {
insight::format_error("Length of `by` must be equal to number of rows in `x`.") # nolint
}
if (!is.data.frame(x) && length(by) != length(x)) {
insight::format_error("Length of `by` must be equal to length of `x`.") # nolint
}
if (!is.factor(by)) {
# coerce "by" to factor, including labels
by <- to_factor(by, labels_to_levels = TRUE, verbose = FALSE)
}
}
by
}
.validate_table_weights <- function(weights, x, weights_expression = NULL) {
# exception: for vectors, if weighting variable not found, "weights" is NULL.
# to check this, we further need to check whether a weights expression was
# provided, e.g. "weights = iris$not_found" - all this is only relevant when
# weights is NULL
if (is.null(weights)) {
# possibly misspelled weights-variables for default-method ----------------
# -------------------------------------------------------------------------
# do we have any value for weights_expression?
if (!is.null(weights_expression) &&
# due to deparse() and substitute, NULL becomes "NULL" - we need to check for this
!identical(weights_expression, "NULL") &&
# we should only run into this problem, when a variable from a data frame
# is used in the data_tabulate() method for vectors - thus, we need to check
# whether the weights_expression contains a "$" - `iris$not_found` is "NULL"
# we need this check, because the default-method of data_tabulate() is called
# from the data.frame method, where `weights = weights`, and then,
# deparse(substitute(weights)) is "weights" (not "NULL" or "iris$not_found"),
# leading to an error when actually all is OK (if "weights" is NULL)
# Example:
#> efc$weights <- abs(rnorm(n = nrow(efc), mean = 1, sd = 0.5))
# Here, efc$wweight is NULL
#> data_tabulate(efc$c172code, weights = efc$wweight)
# Here, wweight errors anyway, because object "wweight" is not found
#> data_tabulate(efc$c172code, weights = wweight)
grepl("$", weights_expression, fixed = TRUE)) {
insight::format_error("The variable specified in `weights` was not found. Possibly misspelled?")
}
} else {
# possibly misspecified weights-variables for data.frame-method -----------
# -------------------------------------------------------------------------
if (is.character(weights)) {
# If "weights" is a character string, must be of length 1
if (length(weights) > 1) {
insight::format_error(
"If `weights` is a string indicating a variable name, `weights` must be of length 1."
)
}
# if "weights" is a character, "x" must be a data frame
if (!is.data.frame(x)) {
insight::format_error("If `weights` is a string indicating a variable name, `x` must be a data frame.") # nolint
}
# is "by" a column in "x"?
if (!weights %in% colnames(x)) {
insight::format_error(sprintf(
"The variable specified in `weights` was not found in `x`. %s",
.misspelled_string(names(x), weights, "Possibly misspelled?")
))
}
weights <- x[[weights]]
}
# is "by" of same length as "x"?
if (is.data.frame(x) && length(weights) != nrow(x)) {
insight::format_error("Length of `weights` must be equal to number of rows in `x`.") # nolint
}
if (!is.data.frame(x) && length(weights) != length(x)) {
insight::format_error("Length of `weights` must be equal to length of `x`.") # nolint
}
}
weights
}
|