1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
#' @title Find or get columns in a data frame based on search patterns
#' @name extract_column_names
#'
#' @description `extract_column_names()` returns column names from a data set that
#' match a certain search pattern, while `data_select()` returns the found data.
#'
#' @param data A data frame.
#' @param select Variables that will be included when performing the required
#' tasks. Can be either
#'
#' - a variable specified as a literal variable name (e.g., `column_name`),
#' - a string with the variable name (e.g., `"column_name"`), a character
#' vector of variable names (e.g., `c("col1", "col2", "col3")`), or a
#' character vector of variable names including ranges specified via `:`
#' (e.g., `c("col1:col3", "col5")`),
#' - for some functions, like `data_select()` or `data_rename()`, `select` can
#' be a named character vector. In this case, the names are used to rename
#' the columns in the output data frame. See 'Details' in the related
#' functions to see where this option applies.
#' - a formula with variable names (e.g., `~column_1 + column_2`),
#' - a vector of positive integers, giving the positions counting from the left
#' (e.g. `1` or `c(1, 3, 5)`),
#' - a vector of negative integers, giving the positions counting from the
#' right (e.g., `-1` or `-1:-3`),
#' - one of the following select-helpers: `starts_with()`, `ends_with()`,
#' `contains()`, a range using `:`, or `regex()`. `starts_with()`,
#' `ends_with()`, and `contains()` accept several patterns, e.g
#' `starts_with("Sep", "Petal")`. `regex()` can be used to define regular
#' expression patterns.
#' - a function testing for logical conditions, e.g. `is.numeric()` (or
#' `is.numeric`), or any user-defined function that selects the variables
#' for which the function returns `TRUE` (like: `foo <- function(x) mean(x) > 3`),
#' - ranges specified via literal variable names, select-helpers (except
#' `regex()`) and (user-defined) functions can be negated, i.e. return
#' non-matching elements, when prefixed with a `-`, e.g. `-ends_with()`,
#' `-is.numeric` or `-(Sepal.Width:Petal.Length)`. **Note:** Negation means
#' that matches are _excluded_, and thus, the `exclude` argument can be
#' used alternatively. For instance, `select=-ends_with("Length")` (with
#' `-`) is equivalent to `exclude=ends_with("Length")` (no `-`). In case
#' negation should not work as expected, use the `exclude` argument instead.
#'
#' If `NULL`, selects all columns. Patterns that found no matches are silently
#' ignored, e.g. `extract_column_names(iris, select = c("Species", "Test"))`
#' will just return `"Species"`.
#' @param exclude See `select`, however, column names matched by the pattern
#' from `exclude` will be excluded instead of selected. If `NULL` (the default),
#' excludes no columns.
#' @param ignore_case Logical, if `TRUE` and when one of the select-helpers or
#' a regular expression is used in `select`, ignores lower/upper case in the
#' search pattern when matching against variable names.
#' @param regex Logical, if `TRUE`, the search pattern from `select` will be
#' treated as regular expression. When `regex = TRUE`, select *must* be a
#' character string (or a variable containing a character string) and is not
#' allowed to be one of the supported select-helpers or a character vector
#' of length > 1. `regex = TRUE` is comparable to using one of the two
#' select-helpers, `select = contains()` or `select = regex()`, however,
#' since the select-helpers may not work when called from inside other
#' functions (see 'Details'), this argument may be used as workaround.
#' @param verbose Toggle warnings.
#' @param ... Arguments passed down to other functions. Mostly not used yet.
#'
#' @inherit data_rename seealso
#'
#' @return
#'
#' `extract_column_names()` returns a character vector with column names that
#' matched the pattern in `select` and `exclude`, or `NULL` if no matching
#' column name was found. `data_select()` returns a data frame with matching
#' columns.
#'
#' @details
#'
#' Specifically for `data_select()`, `select` can also be a named character
#' vector. In this case, the names are used to rename the columns in the
#' output data frame. See 'Examples'.
#'
#' Note that it is possible to either pass an entire select helper or only the
#' pattern inside a select helper as a function argument:
#'
#' ```r
#' foo <- function(data, pattern) {
#' extract_column_names(data, select = starts_with(pattern))
#' }
#' foo(iris, pattern = "Sep")
#'
#' foo2 <- function(data, pattern) {
#' extract_column_names(data, select = pattern)
#' }
#' foo2(iris, pattern = starts_with("Sep"))
#' ```
#'
#' This means that it is also possible to use loop values as arguments or patterns:
#'
#' ```r
#' for (i in c("Sepal", "Sp")) {
#' head(iris) |>
#' extract_column_names(select = starts_with(i)) |>
#' print()
#' }
#' ```
#'
#' However, this behavior is limited to a "single-level function". It will not
#' work in nested functions, like below:
#'
#' ```r
#' inner <- function(data, arg) {
#' extract_column_names(data, select = arg)
#' }
#' outer <- function(data, arg) {
#' inner(data, starts_with(arg))
#' }
#' outer(iris, "Sep")
#' ```
#'
#' In this case, it is better to pass the whole select helper as the argument of
#' `outer()`:
#'
#' ```r
#' outer <- function(data, arg) {
#' inner(data, arg)
#' }
#' outer(iris, starts_with("Sep"))
#' ```
#'
#' @examples
#' # Find column names by pattern
#' extract_column_names(iris, starts_with("Sepal"))
#' extract_column_names(iris, ends_with("Width"))
#' extract_column_names(iris, regex("\\."))
#' extract_column_names(iris, c("Petal.Width", "Sepal.Length"))
#'
#' # starts with "Sepal", but not allowed to end with "width"
#' extract_column_names(iris, starts_with("Sepal"), exclude = contains("Width"))
#'
#' # find numeric with mean > 3.5
#' numeric_mean_35 <- function(x) is.numeric(x) && mean(x, na.rm = TRUE) > 3.5
#' extract_column_names(iris, numeric_mean_35)
#'
#' # find column names, using range
#' extract_column_names(mtcars, c(cyl:hp, wt))
#'
#' # find range of column names by range, using character vector
#' extract_column_names(mtcars, c("cyl:hp", "wt"))
#'
#' # rename returned columns for "data_select()"
#' head(data_select(mtcars, c(`Miles per Gallon` = "mpg", Cylinders = "cyl")))
#' @export
extract_column_names <- function(data,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...) {
columns <- .select_nse(
select,
data,
exclude,
ignore_case = ignore_case,
regex = regex,
verbose = FALSE
)
if (!length(columns) || is.null(columns)) {
columns <- NULL
if (isTRUE(verbose)) {
insight::format_warning(
"No column names that matched the required search pattern were found."
)
}
}
columns
}
#' @rdname extract_column_names
#' @export
find_columns <- extract_column_names
|