1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
#' Normalize numeric variable to 0-1 range
#'
#' Performs a normalization of data, i.e., it scales variables in the range
#' 0 - 1. This is a special case of [rescale()]. `unnormalize()` is the
#' counterpart, but only works for variables that have been normalized with
#' `normalize()`.
#'
#' @param x A numeric vector, (grouped) data frame, or matrix. See 'Details'.
#' @param include_bounds Numeric or logical. Using this can be useful in case of
#' beta-regression, where the response variable is not allowed to include
#' zeros and ones. If `TRUE`, the input is normalized to a range that includes
#' zero and one. If `FALSE`, the return value is compressed, using
#' Smithson and Verkuilen's (2006) formula `(x * (n - 1) + 0.5) / n`, to avoid
#' zeros and ones in the normalized variables. Else, if numeric (e.g., `0.001`),
#' `include_bounds` defines the "distance" to the lower and upper bound, i.e.
#' the normalized vectors are rescaled to a range from `0 + include_bounds` to
#' `1 - include_bounds`.
#' @param ... Arguments passed to or from other methods.
#' @inheritParams standardize.data.frame
#' @inheritParams extract_column_names
#'
#' @inheritSection center Selection of variables - the `select` argument
#'
#' @details
#'
#' - If `x` is a matrix, normalization is performed across all values (not
#' column- or row-wise). For column-wise normalization, convert the matrix to a
#' data.frame.
#' - If `x` is a grouped data frame (`grouped_df`), normalization is performed
#' separately for each group.
#'
#' @seealso See [makepredictcall.dw_transformer()] for use in model formulas.
#'
#' @examples
#'
#' normalize(c(0, 1, 5, -5, -2))
#' normalize(c(0, 1, 5, -5, -2), include_bounds = FALSE)
#' # use a value defining the bounds
#' normalize(c(0, 1, 5, -5, -2), include_bounds = .001)
#'
#' head(normalize(trees))
#'
#' @references
#'
#' Smithson M, Verkuilen J (2006). A Better Lemon Squeezer? Maximum-Likelihood
#' Regression with Beta-Distributed Dependent Variables. Psychological Methods,
#' 11(1), 54–71.
#'
#' @family transform utilities
#'
#' @return A normalized object.
#'
#' @export
normalize <- function(x, ...) {
UseMethod("normalize")
}
#' @rdname normalize
#' @export
normalize.numeric <- function(x, include_bounds = TRUE, verbose = TRUE, ...) {
# Warning if all NaNs or infinite
if (all(is.infinite(x) | is.na(x))) {
return(x)
}
# safe name, for later use
if (is.null(names(x))) {
name <- insight::safe_deparse(substitute(x))
} else {
name <- names(x)
}
# Get infinite and replace by NA (so that the normalization doesn't fail)
infinite_idx <- is.infinite(x)
infinite_vals <- x[infinite_idx]
x[infinite_idx] <- NA
# called from "makepredictcal()"? Then we have additional arguments
dot_args <- list(...)
flag_predict <- FALSE
required_dot_args <- c(
"range_difference", "min_value", "vector_length",
"flag_bounds"
)
if (all(required_dot_args %in% names(dot_args))) {
# we gather informatiom about the original data, which is needed
# for "predict()" to work properly when "normalize()" is called
# in formulas on-the-fly, e.g. "lm(mpg ~ normalize(hp), data = mtcars)"
range_difference <- dot_args$range_difference
min_value <- dot_args$min_value
vector_length <- dot_args$vector_length
flag_bounds <- dot_args$flag_bounds
flag_predict <- TRUE
} else {
range_difference <- diff(range(x, na.rm = TRUE))
min_value <- min(x, na.rm = TRUE)
vector_length <- length(x)
flag_bounds <- NULL
}
# Warning if only one value
if (!flag_predict && insight::has_single_value(x)) {
if (verbose) {
insight::format_warning(
paste0(
"Variable `",
name,
"` contains only one unique value and will not be normalized."
)
)
}
return(x)
}
# Warning if logical vector
if (insight::n_unique(x) == 2 && verbose) {
insight::format_warning(
paste0(
"Variable `",
name,
"` contains only two unique values. Consider converting it to a factor."
)
)
}
# rescale
out <- as.vector((x - min_value) / range_difference)
# if we don't have information on whether bounds are included or not,
# get this information here.
if (is.null(flag_bounds)) {
flag_bounds <- (any(out == 0) || any(out == 1))
}
if (!isTRUE(include_bounds) && flag_bounds) {
if (isFALSE(include_bounds)) {
out <- (out * (vector_length - 1) + 0.5) / vector_length
} else if (is.numeric(include_bounds) && include_bounds > 0 && include_bounds < 1) {
out <- rescale(out, to = c(0 + include_bounds, 1 - include_bounds))
} else if (verbose) {
insight::format_warning(
"`include_bounds` must be either logical or numeric (between 0 and 1).",
"Bounds (zeros and ones) are included in the returned value."
)
}
}
# Re-insert infinite values
out[infinite_idx] <- infinite_vals
attr(out, "include_bounds") <- include_bounds
attr(out, "flag_bounds") <- isTRUE(flag_bounds)
attr(out, "min_value") <- min_value
attr(out, "vector_length") <- vector_length
attr(out, "range_difference") <- range_difference
# don't add attribute when we call data frame methods
if (!isFALSE(dot_args$add_transform_class)) {
class(out) <- c("dw_transformer", class(out))
}
out
}
#' @export
normalize.factor <- function(x, ...) {
x
}
#' @export
normalize.grouped_df <- function(x,
select = NULL,
exclude = NULL,
include_bounds = TRUE,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...) {
# evaluate select/exclude, may be select-helpers
select <- .select_nse(select,
x,
exclude,
ignore_case,
regex = regex,
remove_group_var = TRUE,
verbose = verbose
)
info <- attributes(x)
grps <- attr(x, "groups", exact = TRUE)[[".rows"]]
# when we append variables, we call ".process_append()", which will
# create the new variables and updates "select", so new variables are processed
if (!isFALSE(append)) {
# process arguments
my_args <- .process_append(
x,
select,
append,
append_suffix = "_n"
)
# update processed arguments
x <- my_args$x
select <- my_args$select
}
x <- as.data.frame(x)
# create column(s) to store dw_transformer attributes
for (i in select) {
info$groups[[paste0("attr_", i)]] <- rep(NA, length(grps))
}
for (rows in seq_along(grps)) {
tmp <- normalize(
x[grps[[rows]], , drop = FALSE],
select = select,
exclude = exclude,
include_bounds = include_bounds,
verbose = verbose,
append = FALSE, # need to set to FALSE here, else variable will be doubled
add_transform_class = FALSE,
...
)
# store dw_transformer_attributes
for (i in select) {
info$groups[rows, paste0("attr_", i)][[1]] <- list(unlist(attributes(tmp[[i]])))
}
x[grps[[rows]], ] <- tmp
}
# last column of "groups" attributes must be called ".rows"
info$groups <- data_relocate(info$groups, ".rows", after = -1)
# set back class, so data frame still works with dplyr
attributes(x) <- utils::modifyList(info, attributes(x))
class(x) <- c("grouped_df", class(x))
x
}
#' @rdname normalize
#' @export
normalize.data.frame <- function(x,
select = NULL,
exclude = NULL,
include_bounds = TRUE,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...) {
# evaluate select/exclude, may be select-helpers
select <- .select_nse(select,
x,
exclude,
ignore_case,
regex = regex,
verbose = verbose
)
# when we append variables, we call ".process_append()", which will
# create the new variables and updates "select", so new variables are processed
if (!isFALSE(append)) {
# process arguments
my_args <- .process_append(
x,
select,
append,
append_suffix = "_n"
)
# update processed arguments
x <- my_args$x
select <- my_args$select
}
x[select] <- lapply(
x[select],
normalize,
include_bounds = include_bounds,
verbose = verbose,
add_transform_class = FALSE
)
x
}
#' @export
normalize.matrix <- function(x, ...) {
matrix(normalize(as.numeric(x), ...), nrow = nrow(x))
}
|