1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
#' @title Recode values from one or more variables into a new variable
#' @name recode_into
#'
#' @description
#' This functions recodes values from one or more variables into a new variable.
#' It is a convenient function to avoid nested [`ifelse()`] statements, which
#' is similar to `dplyr::case_when()`.
#'
#' @param ... A sequence of two-sided formulas, where the left hand side (LHS)
#' is a logical matching condition that determines which values match this case.
#' The LHS of this formula is also called "recode pattern" (e.g., in messages).
#' The right hand side (RHS) indicates the replacement value.
#' @param data Optional, name of a data frame. This can be used to avoid writing
#' the data name multiple times in `...`. See 'Examples'.
#' @param default Indicates the default value that is chosen when no match in
#' the formulas in `...` is found. If not provided, `NA` is used as default
#' value.
#' @param overwrite Logical, if `TRUE` (default) and more than one recode pattern
#' apply to the same case, already recoded values will be overwritten by subsequent
#' recode patterns. If `FALSE`, former recoded cases will not be altered by later
#' recode patterns that would apply to those cases again. A warning message is
#' printed to alert such situations and to avoid unintentional recodings.
#' @param preserve_na Logical, if `TRUE` and `default` is not `NA`, missing
#' values in the original variable will be set back to `NA` in the recoded
#' variable (unless overwritten by other recode patterns). If `FALSE`, missing
#' values in the original variable will be recoded to `default`. Setting
#' `preserve_na = TRUE` prevents unintentional overwriting of missing values
#' with `default`, which means that you won't find valid values where the
#' original data only had missing values. See 'Examples'.
#' @param verbose Toggle warnings.
#'
#' @return A vector with recoded values.
#'
#' @examples
#' x <- 1:30
#' recode_into(
#' x > 15 ~ "a",
#' x > 10 & x <= 15 ~ "b",
#' default = "c"
#' )
#'
#' x <- 1:10
#' # default behaviour: second recode pattern "x > 5" overwrites
#' # some of the formerly recoded cases from pattern "x >= 3 & x <= 7"
#' recode_into(
#' x >= 3 & x <= 7 ~ 1,
#' x > 5 ~ 2,
#' default = 0,
#' verbose = FALSE
#' )
#'
#' # setting "overwrite = FALSE" will not alter formerly recoded cases
#' recode_into(
#' x >= 3 & x <= 7 ~ 1,
#' x > 5 ~ 2,
#' default = 0,
#' overwrite = FALSE,
#' verbose = FALSE
#' )
#'
#' set.seed(123)
#' d <- data.frame(
#' x = sample(1:5, 30, TRUE),
#' y = sample(letters[1:5], 30, TRUE),
#' stringsAsFactors = FALSE
#' )
#'
#' # from different variables into new vector
#' recode_into(
#' d$x %in% 1:3 & d$y %in% c("a", "b") ~ 1,
#' d$x > 3 ~ 2,
#' default = 0
#' )
#'
#' # no need to write name of data frame each time
#' recode_into(
#' x %in% 1:3 & y %in% c("a", "b") ~ 1,
#' x > 3 ~ 2,
#' data = d,
#' default = 0
#' )
#'
#' # handling of missing values
#' d <- data.frame(
#' x = c(1, NA, 2, NA, 3, 4),
#' y = c(1, 11, 3, NA, 5, 6)
#' )
#' # first NA in x is overwritten by valid value from y
#' # we have no known value for second NA in x and y,
#' # thus we get one NA in the result
#' recode_into(
#' x <= 3 ~ 1,
#' y > 5 ~ 2,
#' data = d,
#' default = 0,
#' preserve_na = TRUE
#' )
#' # first NA in x is overwritten by valid value from y
#' # default value is used for second NA
#' recode_into(
#' x <= 3 ~ 1,
#' y > 5 ~ 2,
#' data = d,
#' default = 0,
#' preserve_na = FALSE
#' )
#' @export
recode_into <- function(...,
data = NULL,
default = NA,
overwrite = TRUE,
preserve_na = FALSE,
verbose = TRUE) {
dots <- list(...)
# get length of vector, so we know the length of the output vector
len <- if (is.null(data)) {
length(.dynEval(dots[[1]][[2]], ifnotfound = NULL))
} else {
length(with(data, eval(dots[[1]][[2]])))
}
# how many expressions (recode-formulas) do we have?
n_params <- length(dots)
# last expression should always be the default value
if (is.null(default)) {
default <- NA
if (verbose) {
insight::format_warning("Default value can't be `NULL`, setting to `NA` now.")
}
}
# create default output vector
out <- rep(default, times = len)
all_recodes <- NULL
all_same_length <- NULL
new_values <- NULL
# check recode values
for (i in seq_len(n_params)) {
# get type of all recode values
if (is.null(data)) {
value_type <- .dynEval(dots[[i]][[3]], ifnotfound = NULL)
value_length <- .dynEval(dots[[i]][[2]], ifnotfound = NULL)
} else {
value_type <- with(data, eval(dots[[i]][[3]]))
value_length <- with(data, eval(dots[[i]][[2]]))
}
# if we have "NA", we don't want to check the type. Else, you cannot use
# "NA" for numeric recodes, but rather need to use "NA_real_", which is not
# user-friendly
if (is.na(value_type)) {
type <- NULL
} else {
type <- typeof(value_type)
}
len_matches <- length(value_length)
# save type and length of recode values
all_recodes <- c(all_recodes, type)
all_same_length <- c(all_same_length, len_matches)
new_values <- c(new_values, value_type)
}
# if we have mixed types, warn user
if (!is.null(all_recodes) && !all(all_recodes == all_recodes[1])) {
wrong_type <- which(all_recodes != all_recodes[1])
insight::format_error(
paste(
"Recoding not carried out. Not all recode values are of the same type.",
sprintf(
"For instance, the new value of the first pattern, `%s`, is of type `%s`. The new value of the %s recode pattern, `%s`, is of type `%s`.", # nolint
insight::color_text(new_values[1], "cyan"),
insight::color_text(all_recodes[1], "cyan"),
.number_to_text(wrong_type[1]),
insight::color_text(new_values[wrong_type[1]], "cyan"),
insight::color_text(all_recodes[wrong_type[1]], "cyan")
)
)
)
}
# all inputs of correct length?
if (!is.null(all_same_length) && !all(all_same_length == all_same_length[1])) {
wrong_length <- which(all_same_length != all_same_length[1])
insight::format_error(
"The matching conditions return vectors of different length.",
paste(
"Please check if all variables in your recode patterns are of the same length.",
sprintf(
"For instance, the first and the %s recode pattern return vectors of different length.",
.number_to_text(wrong_length[1])
)
)
)
}
# indicator to show message when replacing NA by default
# needed to show message only once
overwrite_NA_msg <- TRUE
# iterate all expressions
for (i in seq_len(n_params)) {
# grep index of observations with replacements and replacement value
if (is.null(data)) {
index <- .dynEval(dots[[i]][[2]], ifnotfound = NULL)
value <- .dynEval(dots[[i]][[3]], ifnotfound = NULL)
} else {
index <- with(data, eval(dots[[i]][[2]]))
value <- with(data, eval(dots[[i]][[3]]))
}
# remember missing values, so we can add back later
missing_index <- is.na(index)
# make sure index has no missing values. when we have missing values in
# original expression, these are considered as "no match" and set to FALSE
# we handle NA value later and thus want to remove them from "index" now
index[is.na(index)] <- FALSE
# overwriting values? do more recode-patterns match the same case?
if (is.na(default)) {
already_exists <- !is.na(out[index])
} else {
already_exists <- out[index] != default
}
# save indices of overwritten cases
overwritten_cases <- which(index)[already_exists]
# tell user...
if (any(already_exists, na.rm = TRUE) && verbose) {
if (overwrite) {
msg <- paste(
"Several recode patterns apply to the same cases.",
"Some of the already recoded cases will be overwritten with new values again",
sprintf("(e.g. pattern %i overwrites the former recode of case %i).", i, overwritten_cases[1])
)
} else {
msg <- paste(
"Several recode patterns apply to the same cases.",
"Some of the already recoded cases will not be altered by later recode patterns.",
sprintf("(e.g. pattern %i also matches the former recode of case %i).", i, overwritten_cases[1])
)
}
insight::format_warning(msg, "Please check if this is intentional!")
}
# if user doesn't want to overwrite, remove already recoded indices
if (!overwrite) {
index[overwritten_cases] <- FALSE
}
# write new values into output vector
out[index] <- value
# set back missing values
if (any(missing_index) && !is.na(default)) {
if (preserve_na) {
# but only where we still have default values
# we don't want to overwrite already recoded values with NA
out[missing_index & out == default] <- NA
} else if (overwrite_NA_msg && verbose) {
# don't show msg again
overwrite_NA_msg <- FALSE
insight::format_alert(
"Missing values in original variable are overwritten by default value. If you want to preserve missing values, set `preserve_na = TRUE`." # nolint
)
}
}
}
out
}
.number_to_text <- function(x) {
if (is.null(x) || is.na(x)) {
return("")
}
if (x == 1) {
"first"
} else if (x == 2) {
"second"
} else if (x == 3) {
"third"
} else if (x == 4) {
"fourth"
} else if (x == 5) {
"fifth"
} else if (x == 21) {
"twenty-first"
} else if (x == 22) {
"twenty-second"
} else if (x == 23) {
"twenty-third"
} else {
paste0(x, "th")
}
}
|