1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
#' Standardization (Z-scoring)
#'
#' Performs a standardization of data (z-scoring), i.e., centering and scaling,
#' so that the data is expressed in terms of standard deviation (i.e., mean = 0,
#' SD = 1) or Median Absolute Deviance (median = 0, MAD = 1). When applied to a
#' statistical model, this function extracts the dataset, standardizes it, and
#' refits the model with this standardized version of the dataset. The
#' [normalize()] function can also be used to scale all numeric variables within
#' the 0 - 1 range.
#' \cr\cr
#' For model standardization, see [`standardize.default()`].
#'
#' @param x A (grouped) data frame, a vector or a statistical model (for
#' `unstandardize()` cannot be a model).
#' @param robust Logical, if `TRUE`, centering is done by subtracting the
#' median from the variables and dividing it by the median absolute deviation
#' (MAD). If `FALSE`, variables are standardized by subtracting the
#' mean and dividing it by the standard deviation (SD).
#' @param two_sd If `TRUE`, the variables are scaled by two times the deviation
#' (SD or MAD depending on `robust`). This method can be useful to obtain
#' model coefficients of continuous parameters comparable to coefficients
#' related to binary predictors, when applied to **the predictors** (not the
#' outcome) (Gelman, 2008).
#' @param weights Can be `NULL` (for no weighting), or:
#' - For model: if `TRUE` (default), a weighted-standardization is carried out.
#' - For `data.frame`s: a numeric vector of weights, or a character of the
#' name of a column in the `data.frame` that contains the weights.
#' - For numeric vectors: a numeric vector of weights.
#' @param verbose Toggle warnings and messages on or off.
#' @param remove_na How should missing values (`NA`) be treated: if `"none"`
#' (default): each column's standardization is done separately, ignoring
#' `NA`s. Else, rows with `NA` in the columns selected with `select` /
#' `exclude` (`"selected"`) or in all columns (`"all"`) are dropped before
#' standardization, and the resulting data frame does not include these cases.
#' @param force Logical, if `TRUE`, forces standardization of factors and dates
#' as well. Factors are converted to numerical values, with the lowest level
#' being the value `1` (unless the factor has numeric levels, which are
#' converted to the corresponding numeric value).
#' @param append Logical or string. If `TRUE`, standardized variables get new
#' column names (with the suffix `"_z"`) and are appended (column bind) to `x`,
#' thus returning both the original and the standardized variables. If `FALSE`,
#' original variables in `x` will be overwritten by their standardized versions.
#' If a character value, standardized variables are appended with new column
#' names (using the defined suffix) to the original data frame.
#' @param reference A data frame or variable from which the centrality and
#' deviation will be computed instead of from the input variable. Useful for
#' standardizing a subset or new data according to another data frame.
#' @param center,scale
#' * For `standardize()`: \cr
#' Numeric values, which can be used as alternative to `reference` to define
#' a reference centrality and deviation. If `scale` and `center` are of
#' length 1, they will be recycled to match the length of selected variables
#' for standardization. Else, `center` and `scale` must be of same length as
#' the number of selected variables. Values in `center` and `scale` will be
#' matched to selected variables in the provided order, unless a named vector
#' is given. In this case, names are matched against the names of the selected
#' variables.
#'
#' * For `unstandardize()`: \cr
#' `center` and `scale` correspond to the center (the mean / median) and the scale (SD / MAD) of
#' the original non-standardized data (for data frames, should be named, or
#' have column order correspond to the numeric column). However, one can also
#' directly provide the original data through `reference`, from which the
#' center and the scale will be computed (according to `robust` and `two_sd`).
#' Alternatively, if the input contains the attributes `center` and `scale`
#' (as does the output of `standardize()`), it will take it from there if the
#' rest of the arguments are absent.
#' @param force Logical, if `TRUE`, forces recoding of factors and character
#' vectors as well.
#' @param ... Arguments passed to or from other methods.
#' @inheritParams extract_column_names
#'
#' @inheritSection center Selection of variables - the `select` argument
#'
#' @return The standardized object (either a standardize data frame or a
#' statistical model fitted on standardized data).
#'
#' @note When `x` is a vector or a data frame with `remove_na = "none")`,
#' missing values are preserved, so the return value has the same length /
#' number of rows as the original input.
#'
#' @seealso See [center()] for grand-mean centering of variables, and
#' [makepredictcall.dw_transformer()] for use in model formulas.
#'
#' @family transform utilities
#' @family standardize
#'
#' @examples
#' d <- iris[1:4, ]
#'
#' # vectors
#' standardise(d$Petal.Length)
#'
#' # Data frames
#' # overwrite
#' standardise(d, select = c("Sepal.Length", "Sepal.Width"))
#'
#' # append
#' standardise(d, select = c("Sepal.Length", "Sepal.Width"), append = TRUE)
#'
#' # append, suffix
#' standardise(d, select = c("Sepal.Length", "Sepal.Width"), append = "_std")
#'
#' # standardizing with reference center and scale
#' d <- data.frame(
#' a = c(-2, -1, 0, 1, 2),
#' b = c(3, 4, 5, 6, 7)
#' )
#'
#' # default standardization, based on mean and sd of each variable
#' standardize(d) # means are 0 and 5, sd ~ 1.581139
#'
#' # standardization, based on mean and sd set to the same values
#' standardize(d, center = c(0, 5), scale = c(1.581, 1.581))
#'
#' # standardization, mean and sd for each variable newly defined
#' standardize(d, center = c(3, 4), scale = c(2, 4))
#'
#' # standardization, taking same mean and sd for each variable
#' standardize(d, center = 1, scale = 3)
#' @export
standardize <- function(x, ...) {
UseMethod("standardize")
}
#' @rdname standardize
#' @export
standardise <- standardize
# Default method is in effectsize
# standardize.default <- function(x, verbose = TRUE, ...) {
# if (isTRUE(verbose)) {
# insight::format_alert(sprintf("Standardizing currently not possible for variables of class '%s'.", class(x)[1])))
# }
# x
# }
#' @rdname standardize
#' @export
standardize.numeric <- function(x,
robust = FALSE,
two_sd = FALSE,
weights = NULL,
reference = NULL,
center = NULL,
scale = NULL,
verbose = TRUE,
...) {
# set default - need to fix this, else we don't know whether this
# comes from "center()" or "standardize()". Furthermore, data.frame
# methods cannot return a vector of NULLs for each variable - instead
# they return NA. Thus, we have to treat NA like NULL
if (is.null(scale) || is.na(scale)) {
scale <- TRUE
}
if (is.null(center) || is.na(center)) {
center <- TRUE
}
my_args <- .process_std_center(x, weights, robust, verbose, reference, center, scale)
dot_args <- list(...)
# Perform standardization
if (is.null(my_args)) {
# all NA?
return(x)
} else if (is.null(my_args$check)) {
vals <- rep(0, length(my_args$vals)) # If only unique value
} else if (two_sd) {
vals <- as.vector((my_args$vals - my_args$center) / (2 * my_args$scale))
} else {
vals <- as.vector((my_args$vals - my_args$center) / my_args$scale)
}
scaled_x <- rep(NA, length(my_args$valid_x))
scaled_x[my_args$valid_x] <- vals
attr(scaled_x, "center") <- my_args$center
attr(scaled_x, "scale") <- my_args$scale
attr(scaled_x, "robust") <- robust
# labels
z <- .set_back_labels(scaled_x, x, include_values = FALSE)
if (!isFALSE(dot_args$add_transform_class)) {
class(z) <- c("dw_transformer", class(z))
}
z
}
#' @export
standardize.double <- standardize.numeric
#' @export
standardize.integer <- standardize.numeric
#' @export
standardize.matrix <- function(x, ...) {
xl <- lapply(seq_len(ncol(x)), function(i) x[, i])
xz <- lapply(xl, datawizard::standardize, ...)
x_out <- do.call(cbind, xz)
dimnames(x_out) <- dimnames(x)
attr(x_out, "center") <- vapply(xz, attr, "center", FUN.VALUE = numeric(1L))
attr(x_out, "scale") <- vapply(xz, attr, "scale", FUN.VALUE = numeric(1L))
attr(x_out, "robust") <- vapply(xz, attr, "robust", FUN.VALUE = logical(1L))[1]
class(x_out) <- c("dw_transformer", class(x_out))
x_out
}
#' @rdname standardize
#' @export
standardize.factor <- function(x,
robust = FALSE,
two_sd = FALSE,
weights = NULL,
force = FALSE,
verbose = TRUE,
...) {
if (!force) {
return(x)
}
standardize(.factor_to_numeric(x),
robust = robust, two_sd = two_sd, weights = weights, verbose = verbose, ...
)
}
#' @export
standardize.character <- standardize.factor
#' @export
standardize.logical <- standardize.factor
#' @export
standardize.Date <- standardize.factor
#' @export
standardize.AsIs <- standardize.numeric
# Data frames -------------------------------------------------------------
#' @rdname standardize
#' @export
standardize.data.frame <- function(x,
select = NULL,
exclude = NULL,
robust = FALSE,
two_sd = FALSE,
weights = NULL,
reference = NULL,
center = NULL,
scale = NULL,
remove_na = c("none", "selected", "all"),
force = FALSE,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...) {
# evaluate select/exclude, may be select-helpers
select <- .select_nse(select,
x,
exclude,
ignore_case,
regex = regex,
verbose = verbose
)
# process arguments
my_args <- .process_std_args(x, select, exclude, weights, append,
append_suffix = "_z", keep_factors = force, remove_na, reference,
.center = center, .scale = scale
)
# set new values
x <- my_args$x
# Loop through variables and standardize it
for (var in my_args$select) {
x[[var]] <- standardize(x[[var]],
robust = robust,
two_sd = two_sd,
weights = my_args$weights,
reference = reference[[var]],
center = my_args$center[var],
scale = my_args$scale[var],
verbose = FALSE,
force = force,
add_transform_class = FALSE
)
}
attr(x, "center") <- unlist(lapply(x[my_args$select], function(z) {
attributes(z)$center
}))
attr(x, "scale") <- unlist(lapply(x[my_args$select], function(z) {
attributes(z)$scale
}))
attr(x, "robust") <- robust
x
}
#' @export
standardize.grouped_df <- function(x,
select = NULL,
exclude = NULL,
robust = FALSE,
two_sd = FALSE,
weights = NULL,
reference = NULL,
center = NULL,
scale = NULL,
remove_na = c("none", "selected", "all"),
force = FALSE,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...) {
# evaluate select/exclude, may be select-helpers
select <- .select_nse(select,
x,
exclude,
ignore_case,
regex = regex,
verbose = verbose
)
my_args <- .process_grouped_df(
x, select, exclude, append,
append_suffix = "_z",
reference, weights, keep_factors = force
)
# create column(s) to store dw_transformer attributes
for (i in select) {
my_args$info$groups[[paste0("attr_", i)]] <- rep(NA, length(my_args$grps))
}
for (rows in seq_along(my_args$grps)) {
tmp <- standardize(
my_args$x[my_args$grps[[rows]], , drop = FALSE],
select = my_args$select,
exclude = NULL,
robust = robust,
two_sd = two_sd,
weights = my_args$weights,
remove_na = remove_na,
verbose = verbose,
force = force,
append = FALSE,
center = center,
scale = scale,
add_transform_class = FALSE,
...
)
# store dw_transformer_attributes
for (i in select) {
my_args$info$groups[rows, paste0("attr_", i)][[1]] <- list(unlist(attributes(tmp[[i]])))
}
my_args$x[my_args$grps[[rows]], ] <- tmp
}
# last column of "groups" attributes must be called ".rows"
my_args$info$groups <- data_relocate(my_args$info$groups, ".rows", after = -1)
# set back class, so data frame still works with dplyr
attributes(my_args$x) <- my_args$info
my_args$x
}
# Datagrid ----------------------------------------------------------------
#' @export
standardize.datagrid <- function(x, ...) {
x[names(x)] <- standardize(as.data.frame(x), reference = attributes(x)$data, ...)
x
}
#' @export
standardize.visualisation_matrix <- standardize.datagrid
|