File: standardize.models.R

package info (click to toggle)
r-cran-datawizard 1.0.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,300 kB
  • sloc: sh: 13; makefile: 2
file content (525 lines) | stat: -rw-r--r-- 16,687 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
#' Re-fit a model with standardized data
#'
#' Performs a standardization of data (z-scoring) using
#' [`standardize()`] and then re-fits the model to the standardized data.
#' \cr\cr
#' Standardization is done by completely refitting the model on the standardized
#' data. Hence, this approach is equal to standardizing the variables *before*
#' fitting the model and will return a new model object. This method is
#' particularly recommended for complex models that include interactions or
#' transformations (e.g., polynomial or spline terms). The `robust` (default to
#' `FALSE`) argument enables a robust standardization of data, based on the
#' `median` and the `MAD` instead of the `mean` and the `SD`.
#'
#' @param x A statistical model.
#' @param weights If `TRUE` (default), a weighted-standardization is carried out.
#' @param include_response If `TRUE` (default), the response value will also be
#'   standardized. If `FALSE`, only the predictors will be standardized.
#'   - Note that for GLMs and models with non-linear link functions, the
#'   response value will not be standardized, to make re-fitting the model work.
#'   - If the model contains an [stats::offset()], the offset variable(s) will
#'   be standardized only if the response is standardized. If `two_sd = TRUE`,
#'   offsets are standardized by one-sd (similar to the response).
#'   - (For `mediate` models, the `include_response` refers to the outcome in
#'   the y model; m model's response will always be standardized when possible).
#' @inheritParams standardize
#'
#' @return A statistical model fitted on standardized data
#'
#' @details
#'
#' # Generalized Linear Models
#' Standardization for generalized linear models (GLM, GLMM, etc) is done only
#' with respect to the predictors (while the outcome remains as-is,
#' unstandardized) - maintaining the interpretability of the coefficients (e.g.,
#' in a binomial model: the exponent of the standardized parameter is the OR of
#' a change of 1 SD in the predictor, etc.)
#'
#' # Dealing with Factors
#' `standardize(model)` or `standardize_parameters(model, method = "refit")` do
#' *not* standardize categorical predictors (i.e. factors) / their
#' dummy-variables, which may be a different behaviour compared to other R
#' packages (such as **lm.beta**) or other software packages (like SPSS). To
#' mimic such behaviours, either use `standardize_parameters(model, method =
#' "basic")` to obtain post-hoc standardized parameters, or standardize the data
#' with `standardize(data, force = TRUE)` *before* fitting the
#' model.
#'
#' # Transformed Variables
#' When the model's formula contains transformations (e.g. `y ~ exp(X)`) the
#' transformation effectively takes place after standardization (e.g.,
#' `exp(scale(X))`). Since some transformations are undefined for none positive
#' values, such as `log()` and `sqrt()`, the relevel variables are shifted (post
#' standardization) by `Z - min(Z) + 1` or `Z - min(Z)` (respectively).
#'
#'
#' @family standardize
#' @examples
#' model <- lm(Infant.Mortality ~ Education * Fertility, data = swiss)
#' coef(standardize(model))
#'
#' @export
#' @aliases standardize_models
standardize.default <- function(x,
                                robust = FALSE,
                                two_sd = FALSE,
                                weights = TRUE,
                                verbose = TRUE,
                                include_response = TRUE,
                                ...) {
  if (!insight::is_model(x)) {
    insight::format_warning(
      paste0(
        "Objects or variables of class '",
        class(x)[1],
        "' cannot be standardized."
      )
    )
    return(x)
  }

  # check model formula. Some notations don't work when standardizing data
  insight::formula_ok(
    x,
    action = "error",
    prefix_msg = "Model cannot be standardized.",
    verbose = verbose
  )

  data_std <- NULL # needed to avoid note
  .standardize_models(x,
    robust = robust, two_sd = two_sd,
    weights = weights,
    verbose = verbose,
    include_response = include_response,
    update_expr = stats::update(x, data = data_std),
    ...
  )
}


.standardize_models <- function(x,
                                robust = FALSE,
                                two_sd = FALSE,
                                weights = TRUE,
                                verbose = TRUE,
                                include_response = TRUE,
                                update_expr,
                                ...) {
  m_info <- .get_model_info(x, ...)
  model_data <- insight::get_data(x, source = "mf", verbose = FALSE)

  if (isTRUE(attr(model_data, "is_subset"))) {
    insight::format_error("Cannot standardize a model fit with a 'subset = '.")
  }

  if (m_info$is_bayesian && verbose) {
    insight::format_warning(
      "Standardizing variables without adjusting priors may lead to bogus results unless priors are auto-scaled."
    )
  }


  ## ---- Z the RESPONSE? ----
  # 1. Some models have special responses that should not be standardized. This
  # includes:
  # - generalized linear models (counts, binomial, etc...)
  # - Survival models
  # 2. We also don't want to standardize the response when `two_sd = TRUE` -
  # instead we will standardize the response separately.

  include_response <- include_response && .safe_to_standardize_response(m_info)

  resp <- NULL
  if (!include_response || (include_response && two_sd)) {
    resp <- c(insight::find_response(x), insight::find_response(x, combine = FALSE))
    resp <- insight::clean_names(resp)
    resp <- unique(resp)
  }

  # If there's an offset, don't standardize offset OR response
  offsets <- insight::find_offset(x)
  if (length(offsets)) {
    if (include_response) {
      if (verbose) {
        insight::format_warning("Offset detected and will be standardized.")
      }

      if (two_sd) {
        # Treat offsets like responses - only standardize by 1 SD
        resp <- c(resp, offsets)
        offsets <- NULL
      }
    } else if (!include_response) {
      # Don't standardize offsets if not standardizing the response
      offsets <- NULL
    }
  }


  ## ---- DO NOT Z: ----

  # 1. WEIGHTS:
  # because negative weights will cause errors in "update()"
  weight_variable <- insight::find_weights(x)

  if (!is.null(weight_variable) &&
    !weight_variable %in% colnames(model_data) &&
    "(weights)" %in% colnames(model_data)) {
    model_data$.missing_weight <- model_data[["(weights)"]]
    colnames(model_data)[ncol(model_data)] <- weight_variable
    weight_variable <- c(weight_variable, "(weights)")
  }

  # 2. RANDOM-GROUPS:
  random_group_factor <- insight::find_random(x, flatten = TRUE, split_nested = TRUE)


  ## ---- SUMMARY: TO Z OR NOT TO Z? ----

  dont_standardize <- c(resp, weight_variable, random_group_factor)
  do_standardize <- setdiff(colnames(model_data), dont_standardize)

  # can't std data$var variables
  doller_vars <- grepl("(.*)\\$(.*)", do_standardize)
  if (any(doller_vars)) {
    doller_vars <- colnames(model_data)[doller_vars]
    insight::format_warning(
      "Unable to standardize variables evaluated in the environment (i.e., not in `data`).",
      "The following variables will not be standardizd:",
      toString(doller_vars)
    )
    do_standardize <- setdiff(do_standardize, doller_vars)
    dont_standardize <- c(dont_standardize, doller_vars)
  }


  if (!length(do_standardize)) {
    insight::format_warning("No variables could be standardized.")
    return(x)
  }


  ## ---- STANDARDIZE! ----

  w <- insight::get_weights(x, remove_na = TRUE)

  data_std <- standardize(model_data[do_standardize],
    robust = robust,
    two_sd = two_sd,
    weights = if (weights) w,
    verbose = verbose
  )

  # if two_sd, it must not affect the response!
  if (include_response && two_sd) {
    data_std[resp] <- standardize(model_data[resp],
      robust = robust,
      two_sd = FALSE,
      weights = if (weights) w,
      verbose = verbose
    )

    dont_standardize <- setdiff(dont_standardize, resp)
  }

  # FIX LOG-SQRT VARS:
  # if we standardize log-terms, standardization will fail (because log of
  # negative value is NaN). Do some back-transformation here

  log_terms <- .log_terms(x, data_std)
  if (length(log_terms) > 0) {
    data_std[log_terms] <- lapply(
      data_std[log_terms],
      function(i) i - min(i, na.rm = TRUE) + 1
    )
  }

  # same for sqrt
  sqrt_terms <- .sqrt_terms(x, data_std)
  if (length(sqrt_terms) > 0) {
    data_std[sqrt_terms] <- lapply(
      data_std[sqrt_terms],
      function(i) i - min(i, na.rm = TRUE)
    )
  }

  if (verbose && length(c(log_terms, sqrt_terms))) {
    insight::format_alert(
      "Formula contains log- or sqrt-terms.",
      "See help(\"standardize\") for how such terms are standardized."
    )
  }


  ## ---- ADD BACK VARS THAT WHERE NOT Z ----
  if (length(dont_standardize)) {
    remaining_columns <- intersect(colnames(model_data), dont_standardize)
    data_std <- cbind(model_data[, remaining_columns, drop = FALSE], data_std)
  }


  ## ---- UPDATE MODEL WITH Z DATA ----
  on.exit(.update_failed())

  if (isTRUE(verbose)) {
    model_std <- eval(substitute(update_expr))
  } else {
    utils::capture.output({
      model_std <- eval(substitute(update_expr))
    })
  }

  on.exit() # undo previous on.exit()

  model_std
}


# Special methods ---------------------------------------------------------


#' @export
standardize.brmsfit <- function(x,
                                robust = FALSE,
                                two_sd = FALSE,
                                weights = TRUE,
                                verbose = TRUE,
                                include_response = TRUE,
                                ...) {
  data_std <- NULL # needed to avoid note
  if (insight::is_multivariate(x)) {
    insight::format_error(
      "Multivariate brmsfit models not supported.",
      "As an alternative: you may standardize your data (and adjust your priors), and re-fit the model."
    )
  }

  .standardize_models(x,
    robust = robust, two_sd = two_sd,
    weights = weights,
    verbose = verbose,
    include_response = include_response,
    update_expr = stats::update(x, newdata = data_std),
    ...
  )
}


#' @export
standardize.mixor <- function(x,
                              robust = FALSE,
                              two_sd = FALSE,
                              weights = TRUE,
                              verbose = TRUE,
                              include_response = TRUE,
                              ...) {
  data_std <- random_group_factor <- NULL # needed to avoid note
  .standardize_models(x,
    robust = robust, two_sd = two_sd,
    weights = weights,
    verbose = verbose,
    include_response = include_response,
    update_expr = {
      data_std <- data_std[order(data_std[, random_group_factor, drop = FALSE]), ]
      stats::update(x, data = data_std)
    },
    ...
  )
}


#' @export
standardize.mediate <- function(x,
                                robust = FALSE,
                                two_sd = FALSE,
                                weights = TRUE,
                                verbose = TRUE,
                                include_response = TRUE,
                                ...) {
  # models and data
  y <- x$model.y
  m <- x$model.m
  y_data <- insight::get_data(y, source = "mf", verbose = FALSE)
  m_data <- insight::get_data(m, source = "mf", verbose = FALSE)

  # std models and data
  y_std <- standardize(y,
    robust = robust, two_sd = two_sd,
    weights = weights, verbose = verbose,
    include_response = include_response, ...
  )
  m_std <- standardize(m,
    robust = robust, two_sd = two_sd,
    weights = weights, verbose = verbose,
    include_response = TRUE, ...
  )
  y_data_std <- insight::get_data(y_std, source = "mf", verbose = FALSE)
  m_data_std <- insight::get_data(m_std, source = "mf", verbose = FALSE)

  # fixed values
  covs <- x$covariates
  control.value <- x$control.value
  treat.value <- x$treat.value


  if (!is.null(covs)) {
    covs <- mapply(.rescale_fixed_values, covs, names(covs),
      SIMPLIFY = FALSE,
      MoreArgs = list(
        y_data = y_data, m_data = m_data,
        y_data_std = y_data_std, m_data_std = m_data_std
      )
    )
    if (verbose) {
      insight::format_alert(
        "Covariates' values have been rescaled to their standardized scales."
      )
    }
  }

  # if (is.numeric(y_data[[x$treat]]) || is.numeric(m_data[[x$treat]])) {
  #   if (!(is.numeric(y_data[[x$treat]]) && is.numeric(m_data[[x$treat]]))) {
  #     stop("'treat' variable is not of same type across both y and m models.",
  #          "\nCannot consistently standardize.", call. = FALSE)
  #   }
  #
  #   temp_vals <- .rescale_fixed_values(c(control.value, treat.value), x$treat,
  #                                      y_data = y_data, m_data = m_data,
  #                                      y_data_std = y_data_std, m_data_std = m_data_std)
  #
  #   control.value <- temp_vals[1]
  #   treat.value <- temp_vals[2]
  #   if (verbose) insight::format_alert("control and treatment values have been rescaled to their standardized scales.")
  # }

  if (verbose && !all(c(control.value, treat.value) %in% c(0, 1))) {
    insight::format_warning(
      "Control and treat values are not 0 and 1, and have not been re-scaled.",
      "Interpret results with caution."
    )
  }


  junk <- utils::capture.output({
    model_std <- stats::update(x,
      model.y = y_std, model.m = m_std,
      # control.value = control.value, treat.value = treat.value
      covariates = covs
    )
  })

  model_std
}


# Cannot ------------------------------------------------------------------


#' @export
standardize.wbm <- function(x, ...) {
  .update_failed(class(x))
}

#' @export
standardize.Surv <- standardize.wbm

#' @export
standardize.clm2 <- standardize.wbm

#' @export
standardize.bcplm <- standardize.wbm

#' @export
standardize.wbgee <- standardize.wbm

#' @export
standardize.biglm <- standardize.wbm
# biglm doesn't regit the model to new data - it ADDs MORE data to the model.


# helper ----------------------------

# Find log-terms inside model formula, and return "clean" term names
.log_terms <- function(model, data) {
  x <- insight::find_terms(model, flatten = TRUE)
  # log_pattern <- "^log\\((.*)\\)"
  log_pattern <- "(log\\(log|log|log1|log10|log1p|log2)\\(([^,\\+)]*).*"
  out <- insight::trim_ws(gsub(log_pattern, "\\2", grep(log_pattern, x, value = TRUE)))
  intersect(colnames(data), out)
}

# Find log-terms inside model formula, and return "clean" term names
.sqrt_terms <- function(model, data) {
  x <- insight::find_terms(model, flatten = TRUE)
  pattern <- "sqrt\\(([^,\\+)]*).*"
  out <- insight::trim_ws(gsub(pattern, "\\1", grep(pattern, x, value = TRUE)))
  intersect(colnames(data), out)
}


#' @keywords internal
.safe_to_standardize_response <- function(info, verbose = TRUE) {
  if (is.null(info)) {
    if (verbose) {
      insight::format_warning(
        "Unable to verify if response should not be standardized.",
        "Response will be standardized."
      )
    }
    return(TRUE)
  }

  # check if model has a response variable that should not be standardized.
  info$is_linear &&
    info$family != "inverse.gaussian" &&
    !info$is_survival &&
    !info$is_censored

  # # alternative would be to keep something like:
  # !info$is_count &&
  #   !info$is_ordinal &&
  #   !info$is_multinomial &&
  #   !info$is_beta &&
  #   !info$is_censored &&
  #   !info$is_binomial &&
  #   !info$is_survival
  # # And then treating response for "Gamma()" or "inverse.gaussian" similar to
  # # log-terms...
}

#' @keywords internal
.rescale_fixed_values <- function(val,
                                  cov_nm,
                                  y_data,
                                  m_data,
                                  y_data_std,
                                  m_data_std) {
  if (cov_nm %in% colnames(y_data)) {
    temp_data <- y_data
    temp_data_std <- y_data_std
  } else {
    temp_data <- m_data
    temp_data_std <- m_data_std
  }

  rescale(val,
    to = range(temp_data_std[[cov_nm]]),
    range = range(temp_data[[cov_nm]])
  )
}


#' @keywords internal
.update_failed <- function(class = NULL, ...) {
  if (is.null(class)) {
    msg1 <- "Unable to refit the model with standardized data."
  } else {
    msg1 <- sprintf("Standardization of parameters not possible for models of class '%s'.", class)
  }

  insight::format_error(
    msg1,
    "Try instead to standardize the data (standardize(data)) and refit the model manually."
  )
}