1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
#' Convert data to numeric
#'
#' Convert data to numeric by converting characters to factors and factors to
#' either numeric levels or dummy variables. The "counterpart" to convert
#' variables into factors is `to_factor()`.
#'
#' @param x A data frame, factor or vector.
#' @param dummy_factors Transform factors to dummy factors (all factor levels as
#' different columns filled with a binary 0-1 value).
#' @param preserve_levels Logical, only applies if `x` is a factor. If `TRUE`,
#' and `x` has numeric factor levels, these will be converted into the related
#' numeric values. If this is not possible, the converted numeric values will
#' start from 1 to number of levels.
#' @param lowest Numeric, indicating the lowest (minimum) value when converting
#' factors or character vectors to numeric values.
#' @param ... Arguments passed to or from other methods.
#' @inheritParams extract_column_names
#' @inheritParams categorize
#'
#' @note When factors should be converted into multiple "binary" dummies, i.e.
#' each factor level is converted into a separate column filled with a binary
#' 0-1 value, set `dummy_factors = TRUE`. If you want to preserve the original
#' factor levels (in case these represent numeric values), use
#' `preserve_levels = TRUE`.
#'
#' @section Selection of variables - `select` argument:
#' For most functions that have a `select` argument the complete input data
#' frame is returned, even when `select` only selects a range of variables.
#' However, for `to_numeric()`, factors might be converted into dummies,
#' thus, the number of variables of the returned data frame no longer match
#' the input data frame. Hence, when `select` is used, *only* those variables
#' (or their dummies) specified in `select` will be returned. Use `append=TRUE`
#' to also include the original variables in the returned data frame.
#'
#' @examples
#' to_numeric(head(ToothGrowth))
#' to_numeric(head(ToothGrowth), dummy_factors = TRUE)
#'
#' # factors
#' x <- as.factor(mtcars$gear)
#' to_numeric(x)
#' to_numeric(x, preserve_levels = TRUE)
#' # same as:
#' coerce_to_numeric(x)
#'
#' @return A data frame of numeric variables.
#'
#' @export
to_numeric <- function(x, ...) {
UseMethod("to_numeric")
}
#' @export
to_numeric.default <- function(x, verbose = TRUE, ...) {
if (isTRUE(verbose)) {
insight::format_alert(
sprintf(
"Converting into numeric values currently not possible for variables of class '%s'.",
class(x)[1]
)
)
}
x
}
#' @rdname to_numeric
#' @export
to_numeric.data.frame <- function(x,
select = NULL,
exclude = NULL,
dummy_factors = FALSE,
preserve_levels = FALSE,
lowest = NULL,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...) {
# validation check, return as is for complete numeric
if (all(vapply(x, is.numeric, FUN.VALUE = logical(1L)))) {
return(x)
}
df_attr <- attributes(x)
# evaluate arguments
select <- .select_nse(select,
x,
exclude,
ignore_case,
regex = regex,
verbose = verbose
)
# when we append variables, we call ".process_append()", which will
# create the new variables and updates "select", so new variables are processed
if (!isFALSE(append)) {
# drop numerics, when append is not FALSE
select <- colnames(x[select])[!vapply(x[select], is.numeric, FUN.VALUE = logical(1L))]
# process arguments
fun_args <- .process_append(
x,
select,
append,
append_suffix = "_n",
keep_factors = TRUE
)
# update processed arguments
x <- fun_args$x
select <- fun_args$select
}
out <- sapply(
x[select],
to_numeric,
dummy_factors = dummy_factors,
preserve_levels = preserve_levels,
lowest = lowest,
verbose = verbose,
simplify = FALSE
)
# save variable attributes
attr_vars <- lapply(out, attributes)
# "out" is currently a list, bind columns and to data frame
out <- as.data.frame(do.call(cbind, out))
# set back attributes
for (i in colnames(out)) {
if (is.list(attr_vars[[i]])) {
if (is.list(attributes(out[[i]]))) {
attributes(out[[i]]) <- utils::modifyList(attr_vars[[i]], attributes(out[[i]]))
} else {
attributes(out[[i]]) <- attr_vars[[i]]
}
}
}
# due to the special handling of dummy factors, we need to take care
# of appending the data here again. usually, "fun_args$x" includes the appended
# data, which does not work here...
if (!isFALSE(append)) {
common_columns <- intersect(colnames(x), colnames(out))
if (length(common_columns)) {
x[common_columns] <- NULL
}
out <- cbind(x, out)
}
# add back custom attributes
out <- .replace_attrs(out, df_attr)
out
}
#' @export
to_numeric.numeric <- function(x, verbose = TRUE, ...) {
.set_back_labels(as.numeric(x), x, reverse_values = FALSE)
}
#' @export
to_numeric.double <- to_numeric.numeric
#' @export
to_numeric.logical <- to_numeric.numeric
#' @export
to_numeric.haven_labelled <- to_numeric.numeric
#' @export
to_numeric.Date <- function(x, verbose = TRUE, ...) {
if (verbose) {
insight::format_warning(
paste0("Converting a date-time variable of class `", class(x)[1], "` into numeric."),
"Please note that this conversion probably does not return meaningful results."
)
}
as.numeric(x)
}
#' @export
to_numeric.POSIXt <- to_numeric.Date
#' @export
to_numeric.POSIXct <- to_numeric.Date
#' @export
to_numeric.POSIXlt <- to_numeric.Date
#' @export
to_numeric.factor <- function(x,
dummy_factors = FALSE,
preserve_levels = FALSE,
lowest = NULL,
verbose = TRUE,
...) {
# preserving levels only works when factor levels are numeric
if (isTRUE(preserve_levels) && anyNA(suppressWarnings(as.numeric(as.character(stats::na.omit(x)))))) {
preserve_levels <- FALSE
}
if (dummy_factors) {
out <- as.data.frame(stats::model.matrix(~x, contrasts.arg = list(x = "contr.treatment")))
out[1] <- as.numeric(rowSums(out[2:ncol(out)]) == 0)
# insert back NA rows. if "x" had missing values, model.matrix() creates an
# array with only non-missing values, so some rows are missing. First, we
# need to now which rows are missing (na_values) and the length of the
# original vector (which will be the number of rows in the final data frame)
na_values <- which(is.na(x))
rows_x <- length(x)
if (any(na_values)) {
# iterate all missing values that have
for (i in seq_along(na_values)) {
# if the first observation was missing, add NA row and bind data frame
if (i == 1 && na_values[i] == 1) {
out <- rbind(NA, out)
} else if (na_values[i] == rows_x) {
# if the last observation was NA, add NA row to data frame
out <- rbind(out, NA)
} else {
# else, pick rows from beginning to current NA value, add NA,
# and rbind the remaining rows
out <- rbind(out[1:(na_values[i] - 1), ], NA, out[na_values[i]:nrow(out), ])
}
}
rownames(out) <- NULL
}
names(out) <- levels(x)
} else if (preserve_levels) {
if (is.unsorted(levels(x))) {
x_inverse <- rep(NA_real_, length(x))
for (i in 1:nlevels(x)) {
x_inverse[x == levels(x)[i]] <- as.numeric(levels(x)[nlevels(x) - i + 1])
}
x <- factor(x_inverse)
}
out <- .set_back_labels(as.numeric(as.character(x)), x, reverse_values = FALSE)
} else {
out <- .set_back_labels(as.numeric(x), x, reverse_values = FALSE)
}
# shift to requested starting value
if (!is.null(lowest)) {
difference <- min(out) - lowest
out <- out - difference
}
out
}
#' @export
to_numeric.character <- function(x,
dummy_factors = FALSE,
lowest = NULL,
verbose = TRUE,
...) {
numbers <- vapply(x, function(i) {
element <- tryCatch(str2lang(i), error = function(e) NULL)
!is.null(element) && is.numeric(element)
}, FUN.VALUE = logical(1L))
if (all(numbers)) {
out <- as.numeric(vapply(x, str2lang, FUN.VALUE = numeric(1L)))
} else {
out <- to_numeric(as.factor(x), dummy_factors = dummy_factors)
}
# shift to requested starting value
if (!is.null(lowest)) {
difference <- min(out) - lowest
out <- out - difference
}
out
}
#' Convert to Numeric (if possible)
#'
#' Tries to convert vector to numeric if possible (if no warnings or errors).
#' Otherwise, leaves it as is.
#'
#' @param x A vector to be converted.
#'
#' @examples
#' coerce_to_numeric(c("1", "2"))
#' coerce_to_numeric(c("1", "2", "A"))
#' @return Numeric vector (if possible)
#' @export
coerce_to_numeric <- function(x) {
tryCatch(as.numeric(as.character(x)),
error = function(e) x,
warning = function(w) x
)
}
|