File: to_numeric.R

package info (click to toggle)
r-cran-datawizard 1.0.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,300 kB
  • sloc: sh: 13; makefile: 2
file content (300 lines) | stat: -rw-r--r-- 9,349 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#' Convert data to numeric
#'
#' Convert data to numeric by converting characters to factors and factors to
#' either numeric levels or dummy variables. The "counterpart" to convert
#' variables into factors is `to_factor()`.
#'
#' @param x A data frame, factor or vector.
#' @param dummy_factors Transform factors to dummy factors (all factor levels as
#'   different columns filled with a binary 0-1 value).
#' @param preserve_levels Logical, only applies if `x` is a factor. If `TRUE`,
#' and `x` has numeric factor levels, these will be converted into the related
#' numeric values. If this is not possible, the converted numeric values will
#' start from 1 to number of levels.
#' @param lowest Numeric, indicating the lowest (minimum) value when converting
#' factors or character vectors to numeric values.
#' @param ... Arguments passed to or from other methods.
#' @inheritParams extract_column_names
#' @inheritParams categorize
#'
#' @note When factors should be converted into multiple "binary" dummies, i.e.
#' each factor level is converted into a separate column filled with a binary
#' 0-1 value, set `dummy_factors = TRUE`. If you want to preserve the original
#' factor levels (in case these represent numeric values), use
#' `preserve_levels = TRUE`.
#'
#' @section Selection of variables - `select` argument:
#' For most functions that have a `select` argument the complete input data
#' frame is returned, even when `select` only selects a range of variables.
#' However, for `to_numeric()`, factors might be converted into dummies,
#' thus, the number of variables of the returned data frame no longer match
#' the input data frame. Hence, when `select` is used, *only* those variables
#' (or their dummies) specified in `select` will be returned. Use `append=TRUE`
#' to also include the original variables in the returned data frame.
#'
#' @examples
#' to_numeric(head(ToothGrowth))
#' to_numeric(head(ToothGrowth), dummy_factors = TRUE)
#'
#' # factors
#' x <- as.factor(mtcars$gear)
#' to_numeric(x)
#' to_numeric(x, preserve_levels = TRUE)
#' # same as:
#' coerce_to_numeric(x)
#'
#' @return A data frame of numeric variables.
#'
#' @export
to_numeric <- function(x, ...) {
  UseMethod("to_numeric")
}

#' @export
to_numeric.default <- function(x, verbose = TRUE, ...) {
  if (isTRUE(verbose)) {
    insight::format_alert(
      sprintf(
        "Converting into numeric values currently not possible for variables of class '%s'.",
        class(x)[1]
      )
    )
  }
  x
}


#' @rdname to_numeric
#' @export
to_numeric.data.frame <- function(x,
                                  select = NULL,
                                  exclude = NULL,
                                  dummy_factors = FALSE,
                                  preserve_levels = FALSE,
                                  lowest = NULL,
                                  append = FALSE,
                                  ignore_case = FALSE,
                                  regex = FALSE,
                                  verbose = TRUE,
                                  ...) {
  # validation check, return as is for complete numeric
  if (all(vapply(x, is.numeric, FUN.VALUE = logical(1L)))) {
    return(x)
  }

  df_attr <- attributes(x)

  # evaluate arguments
  select <- .select_nse(select,
    x,
    exclude,
    ignore_case,
    regex = regex,
    verbose = verbose
  )

  # when we append variables, we call ".process_append()", which will
  # create the new variables and updates "select", so new variables are processed
  if (!isFALSE(append)) {
    # drop numerics, when append is not FALSE
    select <- colnames(x[select])[!vapply(x[select], is.numeric, FUN.VALUE = logical(1L))]
    # process arguments
    fun_args <- .process_append(
      x,
      select,
      append,
      append_suffix = "_n",
      keep_factors = TRUE
    )
    # update processed arguments
    x <- fun_args$x
    select <- fun_args$select
  }

  out <- sapply(
    x[select],
    to_numeric,
    dummy_factors = dummy_factors,
    preserve_levels = preserve_levels,
    lowest = lowest,
    verbose = verbose,
    simplify = FALSE
  )

  # save variable attributes
  attr_vars <- lapply(out, attributes)
  # "out" is currently a list, bind columns and to data frame
  out <- as.data.frame(do.call(cbind, out))
  # set back attributes
  for (i in colnames(out)) {
    if (is.list(attr_vars[[i]])) {
      if (is.list(attributes(out[[i]]))) {
        attributes(out[[i]]) <- utils::modifyList(attr_vars[[i]], attributes(out[[i]]))
      } else {
        attributes(out[[i]]) <- attr_vars[[i]]
      }
    }
  }

  # due to the special handling of dummy factors, we need to take care
  # of appending the data here again. usually, "fun_args$x" includes the appended
  # data, which does not work here...

  if (!isFALSE(append)) {
    common_columns <- intersect(colnames(x), colnames(out))
    if (length(common_columns)) {
      x[common_columns] <- NULL
    }
    out <- cbind(x, out)
  }

  # add back custom attributes
  out <- .replace_attrs(out, df_attr)
  out
}


#' @export
to_numeric.numeric <- function(x, verbose = TRUE, ...) {
  .set_back_labels(as.numeric(x), x, reverse_values = FALSE)
}

#' @export
to_numeric.double <- to_numeric.numeric

#' @export
to_numeric.logical <- to_numeric.numeric

#' @export
to_numeric.haven_labelled <- to_numeric.numeric

#' @export
to_numeric.Date <- function(x, verbose = TRUE, ...) {
  if (verbose) {
    insight::format_warning(
      paste0("Converting a date-time variable of class `", class(x)[1], "` into numeric."),
      "Please note that this conversion probably does not return meaningful results."
    )
  }
  as.numeric(x)
}

#' @export
to_numeric.POSIXt <- to_numeric.Date

#' @export
to_numeric.POSIXct <- to_numeric.Date

#' @export
to_numeric.POSIXlt <- to_numeric.Date


#' @export
to_numeric.factor <- function(x,
                              dummy_factors = FALSE,
                              preserve_levels = FALSE,
                              lowest = NULL,
                              verbose = TRUE,
                              ...) {
  # preserving levels only works when factor levels are numeric
  if (isTRUE(preserve_levels) && anyNA(suppressWarnings(as.numeric(as.character(stats::na.omit(x)))))) {
    preserve_levels <- FALSE
  }

  if (dummy_factors) {
    out <- as.data.frame(stats::model.matrix(~x, contrasts.arg = list(x = "contr.treatment")))
    out[1] <- as.numeric(rowSums(out[2:ncol(out)]) == 0)

    # insert back NA rows. if "x" had missing values, model.matrix() creates an
    # array with only non-missing values, so some rows are missing. First, we
    # need to now which rows are missing (na_values) and the length of the
    # original vector (which will be the number of rows in the final data frame)

    na_values <- which(is.na(x))
    rows_x <- length(x)

    if (any(na_values)) {
      # iterate all missing values that have
      for (i in seq_along(na_values)) {
        # if the first observation was missing, add NA row and bind data frame
        if (i == 1 && na_values[i] == 1) {
          out <- rbind(NA, out)
        } else if (na_values[i] == rows_x) {
          # if the last observation was NA, add NA row to data frame
          out <- rbind(out, NA)
        } else {
          # else, pick rows from beginning to current NA value, add NA,
          # and rbind the remaining rows
          out <- rbind(out[1:(na_values[i] - 1), ], NA, out[na_values[i]:nrow(out), ])
        }
      }
      rownames(out) <- NULL
    }
    names(out) <- levels(x)
  } else if (preserve_levels) {
    if (is.unsorted(levels(x))) {
      x_inverse <- rep(NA_real_, length(x))
      for (i in 1:nlevels(x)) {
        x_inverse[x == levels(x)[i]] <- as.numeric(levels(x)[nlevels(x) - i + 1])
      }
      x <- factor(x_inverse)
    }
    out <- .set_back_labels(as.numeric(as.character(x)), x, reverse_values = FALSE)
  } else {
    out <- .set_back_labels(as.numeric(x), x, reverse_values = FALSE)
  }

  # shift to requested starting value
  if (!is.null(lowest)) {
    difference <- min(out) - lowest
    out <- out - difference
  }

  out
}


#' @export
to_numeric.character <- function(x,
                                 dummy_factors = FALSE,
                                 lowest = NULL,
                                 verbose = TRUE,
                                 ...) {
  numbers <- vapply(x, function(i) {
    element <- tryCatch(str2lang(i), error = function(e) NULL)
    !is.null(element) && is.numeric(element)
  }, FUN.VALUE = logical(1L))
  if (all(numbers)) {
    out <- as.numeric(vapply(x, str2lang, FUN.VALUE = numeric(1L)))
  } else {
    out <- to_numeric(as.factor(x), dummy_factors = dummy_factors)
  }

  # shift to requested starting value
  if (!is.null(lowest)) {
    difference <- min(out) - lowest
    out <- out - difference
  }

  out
}


#' Convert to Numeric (if possible)
#'
#' Tries to convert vector to numeric if possible (if no warnings or errors).
#' Otherwise, leaves it as is.
#'
#' @param x A vector to be converted.
#'
#' @examples
#' coerce_to_numeric(c("1", "2"))
#' coerce_to_numeric(c("1", "2", "A"))
#' @return Numeric vector (if possible)
#' @export
coerce_to_numeric <- function(x) {
  tryCatch(as.numeric(as.character(x)),
    error = function(e) x,
    warning = function(w) x
  )
}