1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
#' @rdname normalize
#' @export
unnormalize <- function(x, ...) {
UseMethod("unnormalize")
}
#' @export
unnormalize.default <- function(x, ...) {
insight::format_error(
"Variables of class '", class(x)[1], "' can't be unnormalized."
)
}
#' @rdname normalize
#' @export
unnormalize.numeric <- function(x, verbose = TRUE, ...) {
## TODO implement algorithm include_bounds = FALSE
# if function called from the "grouped_df" method, we use the dw_transformer
# attributes that were recovered in the "grouped_df" method
dots <- match.call(expand.dots = FALSE)[["..."]]
grp_attr_dw <- eval(dots$grp_attr_dw, envir = parent.frame(1L))
if (is.null(grp_attr_dw)) {
include_bounds <- attr(x, "include_bounds")
min_value <- attr(x, "min_value")
range_difference <- attr(x, "range_difference")
to_range <- attr(x, "to_range")
} else {
names(grp_attr_dw) <- gsub(".*\\.", "", names(grp_attr_dw))
include_bounds <- grp_attr_dw["include_bounds"]
min_value <- grp_attr_dw["min_value"]
range_difference <- grp_attr_dw["range_difference"]
to_range <- grp_attr_dw["to_range"]
if (is.na(to_range)) {
to_range <- NULL
}
}
if (is.null(min_value) || is.null(range_difference)) {
if (verbose) {
insight::format_error("Can't unnormalize variable. Information about range and/or minimum value is missing.")
}
return(x)
}
if (is.null(to_range)) {
x * range_difference + min_value
} else {
(x - to_range[1]) * (range_difference / diff(to_range)) + min_value
}
}
#' @rdname normalize
#' @export
unnormalize.data.frame <- function(x,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...) {
# evaluate select/exclude, may be select-helpers
select <- .select_nse(select,
x,
exclude,
ignore_case,
regex = regex,
verbose = verbose
)
# if function called from the "grouped_df" method, we use the dw_transformer
# attributes that were recovered in the "grouped_df" method
dots <- match.call(expand.dots = FALSE)[["..."]]
if (is.null(dots$grp_attr_dw)) {
grp_attr_dw <- NULL
} else {
grp_attr_dw <- eval(dots$grp_attr_dw, envir = parent.frame(1L))
}
for (i in select) {
var_attr <- grep(paste0("^attr\\_", i, "\\."), names(grp_attr_dw))
attrs <- grp_attr_dw[var_attr]
x[[i]] <- unnormalize(x[[i]], verbose = verbose, grp_attr_dw = attrs)
}
x
}
#' @rdname normalize
#' @export
unnormalize.grouped_df <- function(x,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...) {
# evaluate select/exclude, may be select-helpers
select <- .select_nse(select,
x,
exclude,
ignore_case,
regex = regex,
remove_group_var = TRUE,
verbose = verbose
)
info <- attributes(x)
grps <- attr(x, "groups", exact = TRUE)[[".rows"]]
x <- as.data.frame(x)
for (i in select) {
if (is.null(info$groups[[paste0("attr_", i)]])) {
insight::format_error(
paste(
"Couldn't retrieve the necessary information to unnormalize",
text_concatenate(i, enclose = "`")
)
)
}
}
for (rows in seq_along(grps)) {
# get the dw_transformer attributes for this group
raw_attrs <- unlist(info$groups[rows, startsWith(names(info$groups), "attr")])
if (length(select) == 1L) {
names(raw_attrs) <- paste0("attr_", select, ".", names(raw_attrs))
}
tmp <- unnormalize(
x[grps[[rows]], , drop = FALSE],
select = select,
exclude = exclude,
ignore_case = ignore_case,
regex = regex,
verbose = verbose,
grp_attr_dw = raw_attrs
)
x[grps[[rows]], ] <- tmp
}
# set back class, so data frame still works with dplyr
attributes(x) <- utils::modifyList(info, attributes(x))
class(x) <- c("grouped_df", class(x))
x
}
|