1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
#' @keywords internal
.get_model_info <- function(model, model_info = NULL, ...) {
if (is.null(model_info)) model_info <- insight::model_info(model)
model_info
}
#' Print a message saying that an argument is deprecated and that the user
#' should use its replacement instead.
#'
#' @param arg Argument that is deprecated
#' @param replacement Argument that replaces the deprecated argument
#' @keywords internal
.is_deprecated <- function(arg, replacement) {
insight::format_warning(
paste0("Argument `", arg, "` is deprecated. Please use `", replacement, "` instead.")
)
}
#' `NULL` coalescing operator
#'
#' @keywords internal
#' @noRd
`%||%` <- function(x, y) {
if (is.null(x)) y else x
}
#' Try to convert object to a dataframe
#'
#' @keywords internal
#' @noRd
.coerce_to_dataframe <- function(data) {
if (!is.data.frame(data)) {
data <- tryCatch(
as.data.frame(data, stringsAsFactors = FALSE),
error = function(e) {
insight::format_error(
"`data` must be a data frame, or an object that can be coerced to a data frame."
)
}
)
}
data
}
#' Checks dataframes for syntactically valid column names
#' Argument "action" can be "warning", "error", or "message".
#'
#' @keywords internal
#' @noRd
.check_dataframe_names <- function(x, action = "warning", verbose = TRUE) {
if (verbose && !all(colnames(x) == make.names(colnames(x), unique = TRUE))) {
insight::format_alert(
"Bad column names (e.g., with spaces) have been detected which might create issues in many functions.",
paste0(
"We recommend to rename following columns: ",
text_concatenate(
colnames(x)[colnames(x) != make.names(colnames(x), unique = TRUE)],
enclose = "`"
)
),
"You can run `names(mydata) <- make.names(names(mydata))` or use `janitor::clean_names()` for a quick fix.", # nolint
type = action
)
}
}
#' Fuzzy grep, matches pattern that are close, but not identical
#' @examples
#' colnames(iris)
#' p <- sprintf("(%s){~%i}", "Spela", 2)
#' grep(pattern = p, x = colnames(iris), ignore.case = FALSE)
#' @keywords internal
#' @noRd
.fuzzy_grep <- function(x, pattern, precision = NULL) {
if (is.null(precision)) {
precision <- round(nchar(pattern) / 3)
}
if (precision > nchar(pattern)) {
return(NULL)
}
p <- sprintf("(%s){~%i}", pattern, precision)
grep(pattern = p, x = x, ignore.case = FALSE)
}
#' create a message string to tell user about matches that could possibly
#' be the string they were looking for
#'
#' @keywords internal
#' @noRd
.misspelled_string <- function(source, searchterm, default_message = NULL) {
if (is.null(searchterm) || length(searchterm) < 1) {
return(default_message)
}
# used for many matches
more_found <- ""
# init default
msg <- ""
# guess the misspelled string
possible_strings <- unlist(lapply(searchterm, function(s) {
source[.fuzzy_grep(source, s)] # nolint
}), use.names = FALSE)
if (length(possible_strings)) {
msg <- "Did you mean "
if (length(possible_strings) > 1) {
# make sure we don't print dozens of alternatives for larger data frames
if (length(possible_strings) > 5) {
more_found <- sprintf(
" We even found %i more possible matches, not shown here.",
length(possible_strings) - 5
)
possible_strings <- possible_strings[1:5]
}
msg <- paste0(msg, "one of ", text_concatenate(possible_strings, enclose = "\"", last = " or "))
} else {
msg <- paste0(msg, "\"", possible_strings, "\"")
}
msg <- paste0(msg, "?", more_found)
} else {
msg <- default_message
}
# no double white space
insight::trim_ws(msg)
}
#' Check that a vector is sorted
#' @noRd
#' @keywords internal
.is_sorted <- Negate(is.unsorted)
#' Replace only custom attributes
#'
#' Using "attributes(out) <- attributes(data)" or similar doesn't work so well
#' for big datasets because it takes some time to attribute the row names.
#'
#' This function gives only custom attributes to the new dataset.
#' @noRd
#' @keywords internal
.replace_attrs <- function(data, custom_attr) {
for (nm in setdiff(names(custom_attr), names(attributes(data.frame())))) {
attr(data, which = nm) <- custom_attr[[nm]]
}
return(data)
}
#' @keywords internal
.is_date <- function(x) {
inherits(x, "Date")
}
#' @keywords internal
.are_weights <- function(w) {
!is.null(w) && length(w) && !all(w == 1) && !all(w == w[1])
}
#' @keywords internal
.factor_to_numeric <- function(x) {
# no need to change for numeric
if (is.numeric(x)) {
return(x)
}
# Dates can be coerced by as.numeric(), w/o as.character()
if (inherits(x, "Date")) {
return(as.numeric(x))
}
# Logicals should be 0/1
if (is.logical(x)) {
return(as.numeric(x))
}
if (anyNA(suppressWarnings(as.numeric(as.character(stats::na.omit(x)))))) {
if (is.character(x)) {
x <- as.factor(x)
}
levels(x) <- 1:nlevels(x)
}
as.numeric(as.character(x))
}
# For standardize_parameters ----------------------------------------------
#' @keywords internal
.get_object <- function(x, attribute_name = "object_name") {
obj_name <- attr(x, attribute_name, exact = TRUE)
model <- NULL
if (!is.null(obj_name)) {
model <- tryCatch(
{
get(obj_name, envir = parent.frame())
},
error = function(e) {
NULL
}
)
if (is.null(model) ||
# prevent self reference
inherits(model, "parameters_model")) {
model <- tryCatch(
{
get(obj_name, envir = globalenv())
},
error = function(e) {
NULL
}
)
}
}
model
}
#' Taken from https://github.com/coolbutuseless/gluestick [licence: MIT]
#' Same functionality as `{glue}`
#'
#' @noRd
#' @keywords internal
.gluestick <- function(fmt, src = parent.frame(), open = "{", close = "}", eval = TRUE) {
nchar_open <- nchar(open)
nchar_close <- nchar(close)
# validation checks
stopifnot(exprs = {
is.character(fmt)
length(fmt) == 1L
is.character(open)
length(open) == 1L
nchar_open > 0L
is.character(close)
length(close) == 1
nchar_close > 0
})
# Brute force the open/close characters into a regular expression for
# extracting the expressions from the format string
open <- gsub("(.)", "\\\\\\1", open) # Escape everything!!
close <- gsub("(.)", "\\\\\\1", close) # Escape everything!!
re <- paste0(open, ".*?", close)
# Extract the delimited expressions
matches <- gregexpr(re, fmt)
exprs <- regmatches(fmt, matches)[[1]]
# Remove the delimiters
exprs <- substr(exprs, nchar_open + 1L, nchar(exprs) - nchar_close)
# create a valid sprintf fmt string.
# - replace all "{expr}" strings with "%s"
# - escape any '%' so sprintf() doesn't try and use them for formatting
# but only if the '%' is NOT followed by an 's'
#
# gluestick() doesn't deal with any pathological cases
fmt_sprintf <- gsub(re, "%s", fmt)
fmt_sprintf <- gsub("%(?!s)", "%%", fmt_sprintf, perl = TRUE)
# Evaluate
if (eval) {
args <- lapply(exprs, function(expr) {
eval(parse(text = expr), envir = src)
})
} else {
args <- unname(mget(exprs, envir = as.environment(src)))
}
# Create the string(s)
do.call(sprintf, c(list(fmt_sprintf), args))
}
#' help-functions
#' @keywords internal
#' @noRd
.data_frame <- function(...) {
x <- data.frame(..., stringsAsFactors = FALSE)
rownames(x) <- NULL
x
}
|