File: weighted_mean_median_sd_mad.R

package info (click to toggle)
r-cran-datawizard 1.0.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,300 kB
  • sloc: sh: 13; makefile: 2
file content (137 lines) | stat: -rw-r--r-- 3,632 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#' Weighted Mean, Median, SD, and MAD
#'
#' @inheritParams stats::weighted.mean
#' @inheritParams stats::mad
#' @param weights A numerical vector of weights the same length as `x` giving
#' the weights to use for elements of `x`. If `weights = NULL`, `x` is passed
#' to the non-weighted function.
#' @param verbose Show warning when `weights` are negative?
#' @param remove_na Logical, if `TRUE` (default), removes missing (`NA`) and infinite
#' values from `x` and `weights`.
#'
#' @examples
#' ## GPA from Siegel 1994
#' x <- c(3.7, 3.3, 3.5, 2.8)
#' wt <- c(5, 5, 4, 1) / 15
#'
#' weighted_mean(x, wt)
#' weighted_median(x, wt)
#'
#' weighted_sd(x, wt)
#' weighted_mad(x, wt)
#'
#' @export
weighted_mean <- function(x, weights = NULL, remove_na = TRUE, verbose = TRUE, ...) {
  if (!.are_weights(weights) || !.validate_weights(weights, verbose)) {
    return(mean(x, na.rm = remove_na))
  }

  # remove missings
  complete <- .clean_missings(x, weights, remove_na)
  stats::weighted.mean(complete$x, complete$weights, na.rm = remove_na)
}


#' @export
#' @rdname weighted_mean
weighted_median <- function(x, weights = NULL, remove_na = TRUE, verbose = TRUE, ...) {
  if (!.are_weights(weights) || !.validate_weights(weights, verbose)) {
    return(stats::median(x, na.rm = remove_na))
  }

  p <- 0.5 # split probability

  # remove missings
  complete <- .clean_missings(x, weights, remove_na)

  order <- order(complete$x)
  x <- complete$x[order]
  weights <- complete$weights[order]

  rw <- cumsum(weights) / sum(weights)
  # validation check
  if (all(is.na(rw))) {
    return(NA_real_)
  }

  md.values <- min(which(rw >= p))

  if (rw[md.values] == p) {
    q <- mean(x[md.values:(md.values + 1)])
  } else {
    q <- x[md.values]
  }

  q
}


#' @export
#' @rdname weighted_mean
weighted_sd <- function(x, weights = NULL, remove_na = TRUE, verbose = TRUE, ...) {
  # from cov.wt
  if (!.are_weights(weights) || !.validate_weights(weights, verbose)) {
    return(stats::sd(x, na.rm = remove_na))
  }

  # remove missings
  complete <- .clean_missings(x, weights, remove_na)

  weights1 <- complete$weights / sum(complete$weights)
  center <- sum(weights1 * complete$x)
  xc <- sqrt(weights1) * (complete$x - center)
  var <- (t(xc) %*% xc) / (1 - sum(weights1^2))
  sqrt(as.vector(var))
}

#' @export
#' @rdname weighted_mean
weighted_mad <- function(x, weights = NULL, constant = 1.4826, remove_na = TRUE, verbose = TRUE, ...) {
  # From matrixStats
  if (!.are_weights(weights) || !.validate_weights(weights, verbose)) {
    return(stats::mad(x, na.rm = remove_na))
  }

  center <- weighted_median(x, weights = weights, remove_na = remove_na)
  x <- abs(x - center)
  constant * weighted_median(x, weights = weights, remove_na = remove_na)
}


# Utils -------------------------------------------------------------------

.validate_weights <- function(weights, verbose = TRUE) {
  pos <- all(weights > 0, na.rm = TRUE)

  if (isTRUE(!pos) && isTRUE(verbose)) {
    insight::format_warning("Some `weights` were negative. Weighting not carried out.")
  }

  pos
}

.clean_missings <- function(x, weights, remove_na) {
  if (isTRUE(remove_na)) {
    flag <- FALSE
    if (any(is.infinite(x)) || any(is.infinite(weights))) {
      # remove Inf
      x[is.infinite(x)] <- NA
      weights[is.infinite(weights)] <- NA
      flag <- TRUE
    }

    if (anyNA(x) || anyNA(weights)) {
      # remove missings
      x[is.na(weights)] <- NA
      weights[is.na(x)] <- NA
      flag <- TRUE
    }

    if (flag) {
      weights <- stats::na.omit(weights)
      x <- stats::na.omit(x)
    }
  }

  list(x = x, weights = weights)
}