File: README.md

package info (click to toggle)
r-cran-datawizard 1.0.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,300 kB
  • sloc: sh: 13; makefile: 2
file content (621 lines) | stat: -rw-r--r-- 20,611 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

# `datawizard`: Easy Data Wrangling and Statistical Transformations <img src='man/figures/logo.png' align="right" height="139" />

[![DOI](https://joss.theoj.org/papers/10.21105/joss.04684/status.svg)](https://doi.org/10.21105/joss.04684)
[![downloads](https://cranlogs.r-pkg.org/badges/datawizard)](https://cran.r-project.org/package=datawizard)
[![total](https://cranlogs.r-pkg.org/badges/grand-total/datawizard)](https://cranlogs.r-pkg.org/)

<!-- ***:sparkles: Hockety pockety wockety wack, prepare this data forth and back*** -->

<!-- ***Hockety pockety wockety wock, messy data is in shock*** -->

<!-- ***Hockety pockety wockety woss, you can cite i-it from JOSS*** <sup>(soon)</sup> -->

<!-- ***Hockety pockety wockety wass, datawizard saves your ass! :sparkles:*** -->

`{datawizard}` is a lightweight package to easily manipulate, clean,
transform, and prepare your data for analysis. It is part of the
[easystats ecosystem](https://easystats.github.io/easystats/), a suite
of R packages to deal with your entire statistical analysis, from
cleaning the data to reporting the results.

It covers two aspects of data preparation:

- **Data manipulation**: `{datawizard}` offers a very similar set of
  functions to that of the *tidyverse* packages, such as a `{dplyr}` and
  `{tidyr}`, to select, filter and reshape data, with a few key
  differences. 1) All data manipulation functions start with the prefix
  `data_*` (which makes them easy to identify). 2) Although most
  functions can be used exactly as their *tidyverse* equivalents, they
  are also string-friendly (which makes them easy to program with and
  use inside functions). Finally, `{datawizard}` is super lightweight
  (no dependencies, similar to
  [poorman](https://github.com/nathaneastwood/poorman)), which makes it
  awesome for developers to use in their packages.

- **Statistical transformations**: `{datawizard}` also has powerful
  functions to easily apply common data
  [transformations](https://easystats.github.io/datawizard/reference/index.html#statistical-transformations),
  including standardization, normalization, rescaling,
  rank-transformation, scale reversing, recoding, binning, etc.

</br>

<img src='https://media.giphy.com/media/VcizxCUIgaKpa/giphy.gif' width="300"/>

</br>

# Installation

[![CRAN_Status_Badge](https://www.r-pkg.org/badges/version/datawizard)](https://cran.r-project.org/package=datawizard)
[![datawizard status
badge](https://easystats.r-universe.dev/badges/datawizard)](https://easystats.r-universe.dev)
[![codecov](https://codecov.io/gh/easystats/datawizard/branch/main/graph/badge.svg)](https://app.codecov.io/gh/easystats/datawizard)
[![R-CMD-check](https://github.com/easystats/datawizard/workflows/R-CMD-check/badge.svg?branch=main)](https://github.com/easystats/datawizard/actions)

| Type | Source | Command |
|----|----|----|
| Release | CRAN | `install.packages("datawizard")` |
| Development | r-universe | `install.packages("datawizard", repos = "https://easystats.r-universe.dev")` |
| Development | GitHub | `remotes::install_github("easystats/datawizard")` |

> **Tip**
>
> **Instead of `library(datawizard)`, use `library(easystats)`.** **This
> will make all features of the easystats-ecosystem available.**
>
> **To stay updated, use `easystats::install_latest()`.**

# Citation

To cite the package, run the following command:

``` r
citation("datawizard")
To cite package 'datawizard' in publications use:

  Patil et al., (2022). datawizard: An R Package for Easy Data
  Preparation and Statistical Transformations. Journal of Open Source
  Software, 7(78), 4684, https://doi.org/10.21105/joss.04684

A BibTeX entry for LaTeX users is

  @Article{,
    title = {{datawizard}: An {R} Package for Easy Data Preparation and Statistical Transformations},
    author = {Indrajeet Patil and Dominique Makowski and Mattan S. Ben-Shachar and Brenton M. Wiernik and Etienne Bacher and Daniel Lüdecke},
    journal = {Journal of Open Source Software},
    year = {2022},
    volume = {7},
    number = {78},
    pages = {4684},
    doi = {10.21105/joss.04684},
  }
```

# Features

[![Documentation](https://img.shields.io/badge/documentation-datawizard-orange.svg?colorB=E91E63)](https://easystats.github.io/datawizard/)
[![Blog](https://img.shields.io/badge/blog-easystats-orange.svg?colorB=FF9800)](https://easystats.github.io/blog/posts/)
[![Features](https://img.shields.io/badge/features-datawizard-orange.svg?colorB=2196F3)](https://easystats.github.io/datawizard/reference/index.html)

Most courses and tutorials about statistical modeling assume that you
are working with a clean and tidy dataset. In practice, however, a major
part of doing statistical modeling is preparing your data–cleaning up
values, creating new columns, reshaping the dataset, or transforming
some variables. `{datawizard}` provides easy to use tools to perform
these common, critical, and sometimes tedious data preparation tasks.

## Data wrangling

### Select, filter and remove variables

The package provides helpers to filter rows meeting certain conditions…

``` r
data_match(mtcars, data.frame(vs = 0, am = 1))
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4      21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Porsche 914-2  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Ford Pantera L 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino   19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora  15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
```

… or logical expressions:

``` r
data_filter(mtcars, vs == 0 & am == 1)
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4      21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Porsche 914-2  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Ford Pantera L 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino   19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora  15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
```

Finding columns in a data frame, or retrieving the data of selected
columns, can be achieved using `extract_column_names()` or
`data_select()`:

``` r
# find column names matching a pattern
extract_column_names(iris, starts_with("Sepal"))
#> [1] "Sepal.Length" "Sepal.Width"

# return data columns matching a pattern
data_select(iris, starts_with("Sepal")) |> head()
#>   Sepal.Length Sepal.Width
#> 1          5.1         3.5
#> 2          4.9         3.0
#> 3          4.7         3.2
#> 4          4.6         3.1
#> 5          5.0         3.6
#> 6          5.4         3.9
```

It is also possible to extract one or more variables:

``` r
# single variable
data_extract(mtcars, "gear")
#>  [1] 4 4 4 3 3 3 3 4 4 4 4 3 3 3 3 3 3 4 4 4 3 3 3 3 3 4 5 5 5 5 5 4

# more variables
head(data_extract(iris, ends_with("Width")))
#>   Sepal.Width Petal.Width
#> 1         3.5         0.2
#> 2         3.0         0.2
#> 3         3.2         0.2
#> 4         3.1         0.2
#> 5         3.6         0.2
#> 6         3.9         0.4
```

Due to the consistent API, removing variables is just as simple:

``` r
head(data_remove(iris, starts_with("Sepal")))
#>   Petal.Length Petal.Width Species
#> 1          1.4         0.2  setosa
#> 2          1.4         0.2  setosa
#> 3          1.3         0.2  setosa
#> 4          1.5         0.2  setosa
#> 5          1.4         0.2  setosa
#> 6          1.7         0.4  setosa
```

### Reorder or rename

``` r
head(data_relocate(iris, select = "Species", before = "Sepal.Length"))
#>   Species Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 1  setosa          5.1         3.5          1.4         0.2
#> 2  setosa          4.9         3.0          1.4         0.2
#> 3  setosa          4.7         3.2          1.3         0.2
#> 4  setosa          4.6         3.1          1.5         0.2
#> 5  setosa          5.0         3.6          1.4         0.2
#> 6  setosa          5.4         3.9          1.7         0.4
```

``` r
head(data_rename(iris, c("Sepal.Length", "Sepal.Width"), c("length", "width")))
#>   length width Petal.Length Petal.Width Species
#> 1    5.1   3.5          1.4         0.2  setosa
#> 2    4.9   3.0          1.4         0.2  setosa
#> 3    4.7   3.2          1.3         0.2  setosa
#> 4    4.6   3.1          1.5         0.2  setosa
#> 5    5.0   3.6          1.4         0.2  setosa
#> 6    5.4   3.9          1.7         0.4  setosa
```

### Merge

``` r
x <- data.frame(a = 1:3, b = c("a", "b", "c"), c = 5:7, id = 1:3)
y <- data.frame(c = 6:8, d = c("f", "g", "h"), e = 100:102, id = 2:4)

x
#>   a b c id
#> 1 1 a 5  1
#> 2 2 b 6  2
#> 3 3 c 7  3
y
#>   c d   e id
#> 1 6 f 100  2
#> 2 7 g 101  3
#> 3 8 h 102  4

data_merge(x, y, join = "full")
#>    a    b c id    d   e
#> 3  1    a 5  1 <NA>  NA
#> 1  2    b 6  2    f 100
#> 2  3    c 7  3    g 101
#> 4 NA <NA> 8  4    h 102

data_merge(x, y, join = "left")
#>   a b c id    d   e
#> 3 1 a 5  1 <NA>  NA
#> 1 2 b 6  2    f 100
#> 2 3 c 7  3    g 101

data_merge(x, y, join = "right")
#>    a    b c id d   e
#> 1  2    b 6  2 f 100
#> 2  3    c 7  3 g 101
#> 3 NA <NA> 8  4 h 102

data_merge(x, y, join = "semi", by = "c")
#>   a b c id
#> 2 2 b 6  2
#> 3 3 c 7  3

data_merge(x, y, join = "anti", by = "c")
#>   a b c id
#> 1 1 a 5  1

data_merge(x, y, join = "inner")
#>   a b c id d   e
#> 1 2 b 6  2 f 100
#> 2 3 c 7  3 g 101

data_merge(x, y, join = "bind")
#>    a    b c id    d   e
#> 1  1    a 5  1 <NA>  NA
#> 2  2    b 6  2 <NA>  NA
#> 3  3    c 7  3 <NA>  NA
#> 4 NA <NA> 6  2    f 100
#> 5 NA <NA> 7  3    g 101
#> 6 NA <NA> 8  4    h 102
```

### Reshape

A common data wrangling task is to reshape data.

Either to go from wide/Cartesian to long/tidy format

``` r
wide_data <- data.frame(replicate(5, rnorm(10)))

head(data_to_long(wide_data))
#>   name       value
#> 1   X1 -0.08281164
#> 2   X2 -1.12490028
#> 3   X3 -0.70632036
#> 4   X4 -0.70278946
#> 5   X5  0.07633326
#> 6   X1  1.93468099
```

or the other way

``` r
long_data <- data_to_long(wide_data, rows_to = "Row_ID") # Save row number

data_to_wide(long_data,
  names_from = "name",
  values_from = "value",
  id_cols = "Row_ID"
)
#>    Row_ID          X1          X2          X3         X4          X5
#> 1       1 -0.08281164 -1.12490028 -0.70632036 -0.7027895  0.07633326
#> 2       2  1.93468099 -0.87430362  0.96687656  0.2998642 -0.23035595
#> 3       3 -2.05128979  0.04386162 -0.71016648  1.1494697  0.31746484
#> 4       4  0.27773897 -0.58397514 -0.05917365 -0.3016415 -1.59268440
#> 5       5 -1.52596060 -0.82329858 -0.23094342 -0.5473394 -0.18194062
#> 6       6 -0.26916362  0.11059280  0.69200045 -0.3854041  1.75614174
#> 7       7  1.23305388  0.36472778  1.35682290  0.2763720  0.11394932
#> 8       8  0.63360774  0.05370100  1.78872284  0.1518608 -0.29216508
#> 9       9  0.35271746  1.36867235  0.41071582 -0.4313808  1.75409316
#> 10     10 -0.56048248 -0.38045724 -2.18785470 -1.8705001  1.80958455
```

### Empty rows and columns

``` r
tmp <- data.frame(
  a = c(1, 2, 3, NA, 5),
  b = c(1, NA, 3, NA, 5),
  c = c(NA, NA, NA, NA, NA),
  d = c(1, NA, 3, NA, 5)
)

tmp
#>    a  b  c  d
#> 1  1  1 NA  1
#> 2  2 NA NA NA
#> 3  3  3 NA  3
#> 4 NA NA NA NA
#> 5  5  5 NA  5

# indices of empty columns or rows
empty_columns(tmp)
#> c 
#> 3
empty_rows(tmp)
#> [1] 4

# remove empty columns or rows
remove_empty_columns(tmp)
#>    a  b  d
#> 1  1  1  1
#> 2  2 NA NA
#> 3  3  3  3
#> 4 NA NA NA
#> 5  5  5  5
remove_empty_rows(tmp)
#>   a  b  c  d
#> 1 1  1 NA  1
#> 2 2 NA NA NA
#> 3 3  3 NA  3
#> 5 5  5 NA  5

# remove empty columns and rows
remove_empty(tmp)
#>   a  b  d
#> 1 1  1  1
#> 2 2 NA NA
#> 3 3  3  3
#> 5 5  5  5
```

### Recode or cut dataframe

``` r
set.seed(123)
x <- sample(1:10, size = 50, replace = TRUE)

table(x)
#> x
#>  1  2  3  4  5  6  7  8  9 10 
#>  2  3  5  3  7  5  5  2 11  7

# cut into 3 groups, based on distribution (quantiles)
table(categorize(x, split = "quantile", n_groups = 3))
#> 
#>  1  2  3 
#> 13 19 18
```

## Data Transformations

The packages also contains multiple functions to help transform data.

### Standardize

For example, to standardize (*z*-score) data:

``` r
# before
summary(swiss)
#>    Fertility      Agriculture     Examination      Education    
#>  Min.   :35.00   Min.   : 1.20   Min.   : 3.00   Min.   : 1.00  
#>  1st Qu.:64.70   1st Qu.:35.90   1st Qu.:12.00   1st Qu.: 6.00  
#>  Median :70.40   Median :54.10   Median :16.00   Median : 8.00  
#>  Mean   :70.14   Mean   :50.66   Mean   :16.49   Mean   :10.98  
#>  3rd Qu.:78.45   3rd Qu.:67.65   3rd Qu.:22.00   3rd Qu.:12.00  
#>  Max.   :92.50   Max.   :89.70   Max.   :37.00   Max.   :53.00  
#>     Catholic       Infant.Mortality
#>  Min.   :  2.150   Min.   :10.80   
#>  1st Qu.:  5.195   1st Qu.:18.15   
#>  Median : 15.140   Median :20.00   
#>  Mean   : 41.144   Mean   :19.94   
#>  3rd Qu.: 93.125   3rd Qu.:21.70   
#>  Max.   :100.000   Max.   :26.60

# after
summary(standardize(swiss))
#>    Fertility         Agriculture       Examination         Education      
#>  Min.   :-2.81327   Min.   :-2.1778   Min.   :-1.69084   Min.   :-1.0378  
#>  1st Qu.:-0.43569   1st Qu.:-0.6499   1st Qu.:-0.56273   1st Qu.:-0.5178  
#>  Median : 0.02061   Median : 0.1515   Median :-0.06134   Median :-0.3098  
#>  Mean   : 0.00000   Mean   : 0.0000   Mean   : 0.00000   Mean   : 0.0000  
#>  3rd Qu.: 0.66504   3rd Qu.: 0.7481   3rd Qu.: 0.69074   3rd Qu.: 0.1062  
#>  Max.   : 1.78978   Max.   : 1.7190   Max.   : 2.57094   Max.   : 4.3702  
#>     Catholic       Infant.Mortality  
#>  Min.   :-0.9350   Min.   :-3.13886  
#>  1st Qu.:-0.8620   1st Qu.:-0.61543  
#>  Median :-0.6235   Median : 0.01972  
#>  Mean   : 0.0000   Mean   : 0.00000  
#>  3rd Qu.: 1.2464   3rd Qu.: 0.60337  
#>  Max.   : 1.4113   Max.   : 2.28566
```

### Winsorize

To winsorize data:

``` r
# before
anscombe
#>    x1 x2 x3 x4    y1   y2    y3    y4
#> 1  10 10 10  8  8.04 9.14  7.46  6.58
#> 2   8  8  8  8  6.95 8.14  6.77  5.76
#> 3  13 13 13  8  7.58 8.74 12.74  7.71
#> 4   9  9  9  8  8.81 8.77  7.11  8.84
#> 5  11 11 11  8  8.33 9.26  7.81  8.47
#> 6  14 14 14  8  9.96 8.10  8.84  7.04
#> 7   6  6  6  8  7.24 6.13  6.08  5.25
#> 8   4  4  4 19  4.26 3.10  5.39 12.50
#> 9  12 12 12  8 10.84 9.13  8.15  5.56
#> 10  7  7  7  8  4.82 7.26  6.42  7.91
#> 11  5  5  5  8  5.68 4.74  5.73  6.89

# after
winsorize(anscombe)
#>    x1 x2 x3 x4   y1   y2   y3   y4
#> 1  10 10 10  8 8.04 9.13 7.46 6.58
#> 2   8  8  8  8 6.95 8.14 6.77 5.76
#> 3  12 12 12  8 7.58 8.74 8.15 7.71
#> 4   9  9  9  8 8.81 8.77 7.11 8.47
#> 5  11 11 11  8 8.33 9.13 7.81 8.47
#> 6  12 12 12  8 8.81 8.10 8.15 7.04
#> 7   6  6  6  8 7.24 6.13 6.08 5.76
#> 8   6  6  6  8 5.68 6.13 6.08 8.47
#> 9  12 12 12  8 8.81 9.13 8.15 5.76
#> 10  7  7  7  8 5.68 7.26 6.42 7.91
#> 11  6  6  6  8 5.68 6.13 6.08 6.89
```

### Center

To grand-mean center data

``` r
center(anscombe)
#>    x1 x2 x3 x4          y1         y2    y3         y4
#> 1   1  1  1 -1  0.53909091  1.6390909 -0.04 -0.9209091
#> 2  -1 -1 -1 -1 -0.55090909  0.6390909 -0.73 -1.7409091
#> 3   4  4  4 -1  0.07909091  1.2390909  5.24  0.2090909
#> 4   0  0  0 -1  1.30909091  1.2690909 -0.39  1.3390909
#> 5   2  2  2 -1  0.82909091  1.7590909  0.31  0.9690909
#> 6   5  5  5 -1  2.45909091  0.5990909  1.34 -0.4609091
#> 7  -3 -3 -3 -1 -0.26090909 -1.3709091 -1.42 -2.2509091
#> 8  -5 -5 -5 10 -3.24090909 -4.4009091 -2.11  4.9990909
#> 9   3  3  3 -1  3.33909091  1.6290909  0.65 -1.9409091
#> 10 -2 -2 -2 -1 -2.68090909 -0.2409091 -1.08  0.4090909
#> 11 -4 -4 -4 -1 -1.82090909 -2.7609091 -1.77 -0.6109091
```

### Ranktransform

To rank-transform data:

``` r
# before
head(trees)
#>   Girth Height Volume
#> 1   8.3     70   10.3
#> 2   8.6     65   10.3
#> 3   8.8     63   10.2
#> 4  10.5     72   16.4
#> 5  10.7     81   18.8
#> 6  10.8     83   19.7

# after
head(ranktransform(trees))
#>   Girth Height Volume
#> 1     1    6.0    2.5
#> 2     2    3.0    2.5
#> 3     3    1.0    1.0
#> 4     4    8.5    5.0
#> 5     5   25.5    7.0
#> 6     6   28.0    9.0
```

### Rescale

To rescale a numeric variable to a new range:

``` r
change_scale(c(0, 1, 5, -5, -2))
#> [1]  50  60 100   0  30
#> (original range = -5 to 5)
```

### Rotate or transpose

``` r
x <- mtcars[1:3, 1:4]

x
#>                mpg cyl disp  hp
#> Mazda RX4     21.0   6  160 110
#> Mazda RX4 Wag 21.0   6  160 110
#> Datsun 710    22.8   4  108  93

data_rotate(x)
#>      Mazda RX4 Mazda RX4 Wag Datsun 710
#> mpg         21            21       22.8
#> cyl          6             6        4.0
#> disp       160           160      108.0
#> hp         110           110       93.0
```

## Data properties

`datawizard` provides a way to provide comprehensive descriptive summary
for all variables in a dataframe:

``` r
data(iris)
describe_distribution(iris)
#> Variable     | Mean |   SD |  IQR |        Range | Skewness | Kurtosis |   n | n_Missing
#> ----------------------------------------------------------------------------------------
#> Sepal.Length | 5.84 | 0.83 | 1.30 | [4.30, 7.90] |     0.31 |    -0.55 | 150 |         0
#> Sepal.Width  | 3.06 | 0.44 | 0.52 | [2.00, 4.40] |     0.32 |     0.23 | 150 |         0
#> Petal.Length | 3.76 | 1.77 | 3.52 | [1.00, 6.90] |    -0.27 |    -1.40 | 150 |         0
#> Petal.Width  | 1.20 | 0.76 | 1.50 | [0.10, 2.50] |    -0.10 |    -1.34 | 150 |         0
```

Or even just a variable

``` r
describe_distribution(mtcars$wt)
#> Mean |   SD |  IQR |        Range | Skewness | Kurtosis |  n | n_Missing
#> ------------------------------------------------------------------------
#> 3.22 | 0.98 | 1.19 | [1.51, 5.42] |     0.47 |     0.42 | 32 |         0
```

There are also some additional data properties that can be computed
using this package.

``` r
x <- (-10:10)^3 + rnorm(21, 0, 100)
smoothness(x, method = "diff")
#> [1] 1.791243
#> attr(,"class")
#> [1] "parameters_smoothness" "numeric"
```

## Function design and pipe-workflow

The design of the `{datawizard}` functions follows a design principle
that makes it easy for user to understand and remember how functions
work:

1.  the first argument is the data
2.  for methods that work on data frames, two arguments are following to
    `select` and `exclude` variables
3.  the following arguments are arguments related to the specific tasks
    of the functions

Most important, functions that accept data frames usually have this as
their first argument, and also return a (modified) data frame again.
Thus, `{datawizard}` integrates smoothly into a “pipe-workflow”.

``` r
iris |>
  # all rows where Species is "versicolor" or "virginica"
  data_filter(Species %in% c("versicolor", "virginica")) |>
  # select only columns with "." in names (i.e. drop Species)
  data_select(contains("\\.")) |>
  # move columns that ends with "Length" to start of data frame
  data_relocate(ends_with("Length")) |>
  # remove fourth column
  data_remove(4) |>
  head()
#>    Sepal.Length Petal.Length Sepal.Width
#> 51          7.0          4.7         3.2
#> 52          6.4          4.5         3.2
#> 53          6.9          4.9         3.1
#> 54          5.5          4.0         2.3
#> 55          6.5          4.6         2.8
#> 56          5.7          4.5         2.8
```

# Contributing and Support

In case you want to file an issue or contribute in another way to the
package, please follow [this
guide](https://easystats.github.io/datawizard/CONTRIBUTING.html). For
questions about the functionality, you may either contact us via email
or also file an issue.

# Code of Conduct

Please note that this project is released with a [Contributor Code of
Conduct](https://easystats.github.io/datawizard/CODE_OF_CONDUCT.html).
By participating in this project you agree to abide by its terms.