1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/center.R
\name{center}
\alias{center}
\alias{centre}
\alias{center.numeric}
\alias{center.data.frame}
\title{Centering (Grand-Mean Centering)}
\usage{
center(x, ...)
centre(x, ...)
\method{center}{numeric}(
x,
robust = FALSE,
weights = NULL,
reference = NULL,
center = NULL,
verbose = TRUE,
...
)
\method{center}{data.frame}(
x,
select = NULL,
exclude = NULL,
robust = FALSE,
weights = NULL,
reference = NULL,
center = NULL,
force = FALSE,
remove_na = c("none", "selected", "all"),
append = FALSE,
ignore_case = FALSE,
verbose = TRUE,
regex = FALSE,
...
)
}
\arguments{
\item{x}{A (grouped) data frame, a (numeric or character) vector or a factor.}
\item{...}{Currently not used.}
\item{robust}{Logical, if \code{TRUE}, centering is done by subtracting the
median from the variables. If \code{FALSE}, variables are centered by
subtracting the mean.}
\item{weights}{Can be \code{NULL} (for no weighting), or:
\itemize{
\item For data frames: a numeric vector of weights, or a character of the
name of a column in the \code{data.frame} that contains the weights.
\item For numeric vectors: a numeric vector of weights.
}}
\item{reference}{A data frame or variable from which the centrality and
deviation will be computed instead of from the input variable. Useful for
standardizing a subset or new data according to another data frame.}
\item{center}{Numeric value, which can be used as alternative to
\code{reference} to define a reference centrality. If \code{center} is of length 1,
it will be recycled to match the length of selected variables for centering.
Else, \code{center} must be of same length as the number of selected variables.
Values in \code{center} will be matched to selected variables in the provided
order, unless a named vector is given. In this case, names are matched
against the names of the selected variables.}
\item{verbose}{Toggle warnings and messages.}
\item{select}{Variables that will be included when performing the required
tasks. Can be either
\itemize{
\item a variable specified as a literal variable name (e.g., \code{column_name}),
\item a string with the variable name (e.g., \code{"column_name"}), a character
vector of variable names (e.g., \code{c("col1", "col2", "col3")}), or a
character vector of variable names including ranges specified via \code{:}
(e.g., \code{c("col1:col3", "col5")}),
\item for some functions, like \code{data_select()} or \code{data_rename()}, \code{select} can
be a named character vector. In this case, the names are used to rename
the columns in the output data frame. See 'Details' in the related
functions to see where this option applies.
\item a formula with variable names (e.g., \code{~column_1 + column_2}),
\item a vector of positive integers, giving the positions counting from the left
(e.g. \code{1} or \code{c(1, 3, 5)}),
\item a vector of negative integers, giving the positions counting from the
right (e.g., \code{-1} or \code{-1:-3}),
\item one of the following select-helpers: \code{starts_with()}, \code{ends_with()},
\code{contains()}, a range using \code{:}, or \code{regex()}. \code{starts_with()},
\code{ends_with()}, and \code{contains()} accept several patterns, e.g
\code{starts_with("Sep", "Petal")}. \code{regex()} can be used to define regular
expression patterns.
\item a function testing for logical conditions, e.g. \code{is.numeric()} (or
\code{is.numeric}), or any user-defined function that selects the variables
for which the function returns \code{TRUE} (like: \code{foo <- function(x) mean(x) > 3}),
\item ranges specified via literal variable names, select-helpers (except
\code{regex()}) and (user-defined) functions can be negated, i.e. return
non-matching elements, when prefixed with a \code{-}, e.g. \code{-ends_with()},
\code{-is.numeric} or \code{-(Sepal.Width:Petal.Length)}. \strong{Note:} Negation means
that matches are \emph{excluded}, and thus, the \code{exclude} argument can be
used alternatively. For instance, \code{select=-ends_with("Length")} (with
\code{-}) is equivalent to \code{exclude=ends_with("Length")} (no \code{-}). In case
negation should not work as expected, use the \code{exclude} argument instead.
}
If \code{NULL}, selects all columns. Patterns that found no matches are silently
ignored, e.g. \code{extract_column_names(iris, select = c("Species", "Test"))}
will just return \code{"Species"}.}
\item{exclude}{See \code{select}, however, column names matched by the pattern
from \code{exclude} will be excluded instead of selected. If \code{NULL} (the default),
excludes no columns.}
\item{force}{Logical, if \code{TRUE}, forces centering of factors as
well. Factors are converted to numerical values, with the lowest level
being the value \code{1} (unless the factor has numeric levels, which are
converted to the corresponding numeric value).}
\item{remove_na}{How should missing values (\code{NA}) be treated: if \code{"none"}
(default): each column's standardization is done separately, ignoring
\code{NA}s. Else, rows with \code{NA} in the columns selected with \code{select} /
\code{exclude} (\code{"selected"}) or in all columns (\code{"all"}) are dropped before
standardization, and the resulting data frame does not include these cases.}
\item{append}{Logical or string. If \code{TRUE}, centered variables get new
column names (with the suffix \code{"_c"}) and are appended (column bind) to \code{x},
thus returning both the original and the centered variables. If \code{FALSE},
original variables in \code{x} will be overwritten by their centered versions.
If a character value, centered variables are appended with new column
names (using the defined suffix) to the original data frame.}
\item{ignore_case}{Logical, if \code{TRUE} and when one of the select-helpers or
a regular expression is used in \code{select}, ignores lower/upper case in the
search pattern when matching against variable names.}
\item{regex}{Logical, if \code{TRUE}, the search pattern from \code{select} will be
treated as regular expression. When \code{regex = TRUE}, select \emph{must} be a
character string (or a variable containing a character string) and is not
allowed to be one of the supported select-helpers or a character vector
of length > 1. \code{regex = TRUE} is comparable to using one of the two
select-helpers, \code{select = contains()} or \code{select = regex()}, however,
since the select-helpers may not work when called from inside other
functions (see 'Details'), this argument may be used as workaround.}
}
\value{
The centered variables.
}
\description{
Performs a grand-mean centering of data.
}
\note{
\strong{Difference between centering and standardizing}: Standardized variables
are computed by subtracting the mean of the variable and then dividing it by
the standard deviation, while centering variables involves only the
subtraction.
}
\section{Selection of variables - the \code{select} argument}{
For most functions that have a \code{select} argument (including this function),
the complete input data frame is returned, even when \code{select} only selects
a range of variables. That is, the function is only applied to those variables
that have a match in \code{select}, while all other variables remain unchanged.
In other words: for this function, \code{select} will not omit any non-included
variables, so that the returned data frame will include all variables
from the input data frame.
}
\examples{
data(iris)
# entire data frame or a vector
head(iris$Sepal.Width)
head(center(iris$Sepal.Width))
head(center(iris))
head(center(iris, force = TRUE))
# only the selected columns from a data frame
center(anscombe, select = c("x1", "x3"))
center(anscombe, exclude = c("x1", "x3"))
# centering with reference center and scale
d <- data.frame(
a = c(-2, -1, 0, 1, 2),
b = c(3, 4, 5, 6, 7)
)
# default centering at mean
center(d)
# centering, using 0 as mean
center(d, center = 0)
# centering, using -5 as mean
center(d, center = -5)
}
\seealso{
If centering within-clusters (instead of grand-mean centering)
is required, see \code{\link[=demean]{demean()}}. For standardizing, see \code{\link[=standardize]{standardize()}}, and
\code{\link[=makepredictcall.dw_transformer]{makepredictcall.dw_transformer()}} for use in model formulas.
}
|