1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/convert_na_to.R
\name{convert_na_to}
\alias{convert_na_to}
\alias{convert_na_to.numeric}
\alias{convert_na_to.character}
\alias{convert_na_to.data.frame}
\title{Replace missing values in a variable or a data frame.}
\usage{
convert_na_to(x, ...)
\method{convert_na_to}{numeric}(x, replacement = NULL, verbose = TRUE, ...)
\method{convert_na_to}{character}(x, replacement = NULL, verbose = TRUE, ...)
\method{convert_na_to}{data.frame}(
x,
select = NULL,
exclude = NULL,
replacement = NULL,
replace_num = replacement,
replace_char = replacement,
replace_fac = replacement,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...
)
}
\arguments{
\item{x}{A numeric, factor, or character vector, or a data frame.}
\item{...}{Not used.}
\item{replacement}{Numeric or character value that will be used to
replace \code{NA}.}
\item{verbose}{Toggle warnings.}
\item{select}{Variables that will be included when performing the required
tasks. Can be either
\itemize{
\item a variable specified as a literal variable name (e.g., \code{column_name}),
\item a string with the variable name (e.g., \code{"column_name"}), a character
vector of variable names (e.g., \code{c("col1", "col2", "col3")}), or a
character vector of variable names including ranges specified via \code{:}
(e.g., \code{c("col1:col3", "col5")}),
\item for some functions, like \code{data_select()} or \code{data_rename()}, \code{select} can
be a named character vector. In this case, the names are used to rename
the columns in the output data frame. See 'Details' in the related
functions to see where this option applies.
\item a formula with variable names (e.g., \code{~column_1 + column_2}),
\item a vector of positive integers, giving the positions counting from the left
(e.g. \code{1} or \code{c(1, 3, 5)}),
\item a vector of negative integers, giving the positions counting from the
right (e.g., \code{-1} or \code{-1:-3}),
\item one of the following select-helpers: \code{starts_with()}, \code{ends_with()},
\code{contains()}, a range using \code{:}, or \code{regex()}. \code{starts_with()},
\code{ends_with()}, and \code{contains()} accept several patterns, e.g
\code{starts_with("Sep", "Petal")}. \code{regex()} can be used to define regular
expression patterns.
\item a function testing for logical conditions, e.g. \code{is.numeric()} (or
\code{is.numeric}), or any user-defined function that selects the variables
for which the function returns \code{TRUE} (like: \code{foo <- function(x) mean(x) > 3}),
\item ranges specified via literal variable names, select-helpers (except
\code{regex()}) and (user-defined) functions can be negated, i.e. return
non-matching elements, when prefixed with a \code{-}, e.g. \code{-ends_with()},
\code{-is.numeric} or \code{-(Sepal.Width:Petal.Length)}. \strong{Note:} Negation means
that matches are \emph{excluded}, and thus, the \code{exclude} argument can be
used alternatively. For instance, \code{select=-ends_with("Length")} (with
\code{-}) is equivalent to \code{exclude=ends_with("Length")} (no \code{-}). In case
negation should not work as expected, use the \code{exclude} argument instead.
}
If \code{NULL}, selects all columns. Patterns that found no matches are silently
ignored, e.g. \code{extract_column_names(iris, select = c("Species", "Test"))}
will just return \code{"Species"}.}
\item{exclude}{See \code{select}, however, column names matched by the pattern
from \code{exclude} will be excluded instead of selected. If \code{NULL} (the default),
excludes no columns.}
\item{replace_num}{Value to replace \code{NA} when variable is of type numeric.}
\item{replace_char}{Value to replace \code{NA} when variable is of type character.}
\item{replace_fac}{Value to replace \code{NA} when variable is of type factor.}
\item{ignore_case}{Logical, if \code{TRUE} and when one of the select-helpers or
a regular expression is used in \code{select}, ignores lower/upper case in the
search pattern when matching against variable names.}
\item{regex}{Logical, if \code{TRUE}, the search pattern from \code{select} will be
treated as regular expression. When \code{regex = TRUE}, select \emph{must} be a
character string (or a variable containing a character string) and is not
allowed to be one of the supported select-helpers or a character vector
of length > 1. \code{regex = TRUE} is comparable to using one of the two
select-helpers, \code{select = contains()} or \code{select = regex()}, however,
since the select-helpers may not work when called from inside other
functions (see 'Details'), this argument may be used as workaround.}
}
\value{
\code{x}, where \code{NA} values are replaced by \code{replacement}.
}
\description{
Replace missing values in a variable or a data frame.
}
\section{Selection of variables - the \code{select} argument}{
For most functions that have a \code{select} argument (including this function),
the complete input data frame is returned, even when \code{select} only selects
a range of variables. That is, the function is only applied to those variables
that have a match in \code{select}, while all other variables remain unchanged.
In other words: for this function, \code{select} will not omit any non-included
variables, so that the returned data frame will include all variables
from the input data frame.
}
\examples{
# Convert NA to 0 in a numeric vector
convert_na_to(
c(9, 3, NA, 2, 3, 1, NA, 8),
replacement = 0
)
# Convert NA to "missing" in a character vector
convert_na_to(
c("a", NA, "d", "z", NA, "t"),
replacement = "missing"
)
### For data frames
test_df <- data.frame(
x = c(1, 2, NA),
x2 = c(4, 5, NA),
y = c("a", "b", NA)
)
# Convert all NA to 0 in numeric variables, and all NA to "missing" in
# character variables
convert_na_to(
test_df,
replace_num = 0,
replace_char = "missing"
)
# Convert a specific variable in the data frame
convert_na_to(
test_df,
replace_num = 0,
replace_char = "missing",
select = "x"
)
# Convert all variables starting with "x"
convert_na_to(
test_df,
replace_num = 0,
replace_char = "missing",
select = starts_with("x")
)
# Convert NA to 1 in variable 'x2' and to 0 in all other numeric
# variables
convert_na_to(
test_df,
replace_num = 0,
select = list(x2 = 1)
)
}
|