File: convert_na_to.Rd

package info (click to toggle)
r-cran-datawizard 1.0.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,300 kB
  • sloc: sh: 13; makefile: 2
file content (172 lines) | stat: -rw-r--r-- 6,343 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/convert_na_to.R
\name{convert_na_to}
\alias{convert_na_to}
\alias{convert_na_to.numeric}
\alias{convert_na_to.character}
\alias{convert_na_to.data.frame}
\title{Replace missing values in a variable or a data frame.}
\usage{
convert_na_to(x, ...)

\method{convert_na_to}{numeric}(x, replacement = NULL, verbose = TRUE, ...)

\method{convert_na_to}{character}(x, replacement = NULL, verbose = TRUE, ...)

\method{convert_na_to}{data.frame}(
  x,
  select = NULL,
  exclude = NULL,
  replacement = NULL,
  replace_num = replacement,
  replace_char = replacement,
  replace_fac = replacement,
  ignore_case = FALSE,
  regex = FALSE,
  verbose = TRUE,
  ...
)
}
\arguments{
\item{x}{A numeric, factor, or character vector, or a data frame.}

\item{...}{Not used.}

\item{replacement}{Numeric or character value that will be used to
replace \code{NA}.}

\item{verbose}{Toggle warnings.}

\item{select}{Variables that will be included when performing the required
tasks. Can be either
\itemize{
\item a variable specified as a literal variable name (e.g., \code{column_name}),
\item a string with the variable name (e.g., \code{"column_name"}), a character
vector of variable names (e.g., \code{c("col1", "col2", "col3")}), or a
character vector of variable names including ranges specified via \code{:}
(e.g., \code{c("col1:col3", "col5")}),
\item for some functions, like \code{data_select()} or \code{data_rename()}, \code{select} can
be a named character vector. In this case, the names are used to rename
the columns in the output data frame. See 'Details' in the related
functions to see where this option applies.
\item a formula with variable names (e.g., \code{~column_1 + column_2}),
\item a vector of positive integers, giving the positions counting from the left
(e.g. \code{1} or \code{c(1, 3, 5)}),
\item a vector of negative integers, giving the positions counting from the
right (e.g., \code{-1} or \code{-1:-3}),
\item one of the following select-helpers: \code{starts_with()}, \code{ends_with()},
\code{contains()}, a range using \code{:}, or \code{regex()}. \code{starts_with()},
\code{ends_with()}, and  \code{contains()} accept several patterns, e.g
\code{starts_with("Sep", "Petal")}. \code{regex()} can be used to define regular
expression patterns.
\item a function testing for logical conditions, e.g. \code{is.numeric()} (or
\code{is.numeric}), or any user-defined function that selects the variables
for which the function returns \code{TRUE} (like: \code{foo <- function(x) mean(x) > 3}),
\item ranges specified via literal variable names, select-helpers (except
\code{regex()}) and (user-defined) functions can be negated, i.e. return
non-matching elements, when prefixed with a \code{-}, e.g. \code{-ends_with()},
\code{-is.numeric} or \code{-(Sepal.Width:Petal.Length)}. \strong{Note:} Negation means
that matches are \emph{excluded}, and thus, the \code{exclude} argument can be
used alternatively. For instance, \code{select=-ends_with("Length")} (with
\code{-}) is equivalent to \code{exclude=ends_with("Length")} (no \code{-}). In case
negation should not work as expected, use the \code{exclude} argument instead.
}

If \code{NULL}, selects all columns. Patterns that found no matches are silently
ignored, e.g. \code{extract_column_names(iris, select = c("Species", "Test"))}
will just return \code{"Species"}.}

\item{exclude}{See \code{select}, however, column names matched by the pattern
from \code{exclude} will be excluded instead of selected. If \code{NULL} (the default),
excludes no columns.}

\item{replace_num}{Value to replace \code{NA} when variable is of type numeric.}

\item{replace_char}{Value to replace \code{NA} when variable is of type character.}

\item{replace_fac}{Value to replace \code{NA} when variable is of type factor.}

\item{ignore_case}{Logical, if \code{TRUE} and when one of the select-helpers or
a regular expression is used in \code{select}, ignores lower/upper case in the
search pattern when matching against variable names.}

\item{regex}{Logical, if \code{TRUE}, the search pattern from \code{select} will be
treated as regular expression. When \code{regex = TRUE}, select \emph{must} be a
character string (or a variable containing a character string) and is not
allowed to be one of the supported select-helpers or a character vector
of length > 1. \code{regex = TRUE} is comparable to using one of the two
select-helpers, \code{select = contains()} or \code{select = regex()}, however,
since the select-helpers may not work when called from inside other
functions (see 'Details'), this argument may be used as workaround.}
}
\value{
\code{x}, where \code{NA} values are replaced by \code{replacement}.
}
\description{
Replace missing values in a variable or a data frame.
}
\section{Selection of variables - the \code{select} argument}{

For most functions that have a \code{select} argument (including this function),
the complete input data frame is returned, even when \code{select} only selects
a range of variables. That is, the function is only applied to those variables
that have a match in \code{select}, while all other variables remain unchanged.
In other words: for this function, \code{select} will not omit any non-included
variables, so that the returned data frame will include all variables
from the input data frame.
}

\examples{
# Convert NA to 0 in a numeric vector
convert_na_to(
  c(9, 3, NA, 2, 3, 1, NA, 8),
  replacement = 0
)

# Convert NA to "missing" in a character vector
convert_na_to(
  c("a", NA, "d", "z", NA, "t"),
  replacement = "missing"
)

### For data frames

test_df <- data.frame(
  x = c(1, 2, NA),
  x2 = c(4, 5, NA),
  y = c("a", "b", NA)
)

# Convert all NA to 0 in numeric variables, and all NA to "missing" in
# character variables
convert_na_to(
  test_df,
  replace_num = 0,
  replace_char = "missing"
)

# Convert a specific variable in the data frame
convert_na_to(
  test_df,
  replace_num = 0,
  replace_char = "missing",
  select = "x"
)

# Convert all variables starting with "x"
convert_na_to(
  test_df,
  replace_num = 0,
  replace_char = "missing",
  select = starts_with("x")
)

# Convert NA to 1 in variable 'x2' and to 0 in all other numeric
# variables
convert_na_to(
  test_df,
  replace_num = 0,
  select = list(x2 = 1)
)

}