1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/data_match.R
\name{data_match}
\alias{data_match}
\alias{data_filter}
\title{Return filtered or sliced data frame, or row indices}
\usage{
data_match(
x,
to,
match = "and",
return_indices = FALSE,
remove_na = TRUE,
drop_na,
...
)
data_filter(x, ...)
}
\arguments{
\item{x}{A data frame.}
\item{to}{A data frame matching the specified conditions. Note that if
\code{match} is a value other than \code{"and"}, the original row order might be
changed. See 'Details'.}
\item{match}{String, indicating with which logical operation matching
conditions should be combined. Can be \code{"and"} (or \code{"&"}), \code{"or"} (or \code{"|"})
or \code{"not"} (or \code{"!"}).}
\item{return_indices}{Logical, if \code{FALSE}, return the vector of rows that
can be used to filter the original data frame. If \code{FALSE} (default),
returns directly the filtered data frame instead of the row indices.}
\item{remove_na}{Logical, if \code{TRUE}, missing values (\code{NA}s) are removed before
filtering the data. This is the default behaviour, however, sometimes when
row indices are requested (i.e. \code{return_indices=TRUE}), it might be useful
to preserve \code{NA} values, so returned row indices match the row indices of
the original data frame.}
\item{drop_na}{Deprecated, please use \code{remove_na} instead.}
\item{...}{A sequence of logical expressions indicating which rows to keep,
or a numeric vector indicating the row indices of rows to keep. Can also be
a string representation of a logical expression (e.g. \code{"x > 4"}), a
character vector (e.g. \code{c("x > 4", "y == 2")}) or a variable that contains
the string representation of a logical expression. These might be useful
when used in packages to avoid defining undefined global variables.}
}
\value{
A filtered data frame, or the row indices that match the specified
configuration.
}
\description{
Return a filtered (or sliced) data frame or row indices of a data frame that
match a specific condition. \code{data_filter()} works like \code{data_match()}, but works
with logical expressions or row indices of a data frame to specify matching
conditions.
}
\details{
For \code{data_match()}, if \code{match} is either \code{"or"} or \code{"not"}, the
original row order from \code{x} might be changed. If preserving row order is
required, use \code{data_filter()} instead.
\if{html}{\out{<div class="sourceCode">}}\preformatted{# mimics subset() behaviour, preserving original row order
head(data_filter(mtcars[c("mpg", "vs", "am")], vs == 0 | am == 1))
#> mpg vs am
#> Mazda RX4 21.0 0 1
#> Mazda RX4 Wag 21.0 0 1
#> Datsun 710 22.8 1 1
#> Hornet Sportabout 18.7 0 0
#> Duster 360 14.3 0 0
#> Merc 450SE 16.4 0 0
# re-sorting rows
head(data_match(mtcars[c("mpg", "vs", "am")],
data.frame(vs = 0, am = 1),
match = "or"))
#> mpg vs am
#> Mazda RX4 21.0 0 1
#> Mazda RX4 Wag 21.0 0 1
#> Hornet Sportabout 18.7 0 0
#> Duster 360 14.3 0 0
#> Merc 450SE 16.4 0 0
#> Merc 450SL 17.3 0 0
}\if{html}{\out{</div>}}
While \code{data_match()} works with data frames to match conditions against,
\code{data_filter()} is basically a wrapper around \verb{subset(subset = <filter>)}.
However, unlike \code{subset()}, it preserves label attributes and is useful when
working with labelled data.
}
\examples{
data_match(mtcars, data.frame(vs = 0, am = 1))
data_match(mtcars, data.frame(vs = 0, am = c(0, 1)))
# observations where "vs" is NOT 0 AND "am" is NOT 1
data_match(mtcars, data.frame(vs = 0, am = 1), match = "not")
# equivalent to
data_filter(mtcars, vs != 0 & am != 1)
# observations where EITHER "vs" is 0 OR "am" is 1
data_match(mtcars, data.frame(vs = 0, am = 1), match = "or")
# equivalent to
data_filter(mtcars, vs == 0 | am == 1)
# slice data frame by row indices
data_filter(mtcars, 5:10)
# Define a custom function containing data_filter()
my_filter <- function(data, variable) {
data_filter(data, variable)
}
my_filter(mtcars, "cyl == 6")
# Pass complete filter-condition as string.
my_filter <- function(data, condition) {
data_filter(data, condition)
}
my_filter(mtcars, "am != 0")
# string can also be used directly as argument
data_filter(mtcars, "am != 0")
# or as variable
fl <- "am != 0"
data_filter(mtcars, fl)
}
\seealso{
\itemize{
\item Add a prefix or suffix to column names: \code{\link[=data_addprefix]{data_addprefix()}}, \code{\link[=data_addsuffix]{data_addsuffix()}}
\item Functions to reorder or remove columns: \code{\link[=data_reorder]{data_reorder()}}, \code{\link[=data_relocate]{data_relocate()}},
\code{\link[=data_remove]{data_remove()}}
\item Functions to reshape, pivot or rotate data frames: \code{\link[=data_to_long]{data_to_long()}},
\code{\link[=data_to_wide]{data_to_wide()}}, \code{\link[=data_rotate]{data_rotate()}}
\item Functions to recode data: \code{\link[=rescale]{rescale()}}, \code{\link[=reverse]{reverse()}}, \code{\link[=categorize]{categorize()}},
\code{\link[=recode_values]{recode_values()}}, \code{\link[=slide]{slide()}}
\item Functions to standardize, normalize, rank-transform: \code{\link[=center]{center()}}, \code{\link[=standardize]{standardize()}},
\code{\link[=normalize]{normalize()}}, \code{\link[=ranktransform]{ranktransform()}}, \code{\link[=winsorize]{winsorize()}}
\item Split and merge data frames: \code{\link[=data_partition]{data_partition()}}, \code{\link[=data_merge]{data_merge()}}
\item Functions to find or select columns: \code{\link[=data_select]{data_select()}}, \code{\link[=extract_column_names]{extract_column_names()}}
\item Functions to filter rows: \code{\link[=data_match]{data_match()}}, \code{\link[=data_filter]{data_filter()}}
}
}
|