1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/data_tabulate.R
\name{data_tabulate}
\alias{data_tabulate}
\alias{data_tabulate.default}
\alias{data_tabulate.data.frame}
\alias{as.data.frame.datawizard_tables}
\title{Create frequency and crosstables of variables}
\usage{
data_tabulate(x, ...)
\method{data_tabulate}{default}(
x,
by = NULL,
drop_levels = FALSE,
weights = NULL,
remove_na = FALSE,
proportions = NULL,
name = NULL,
verbose = TRUE,
...
)
\method{data_tabulate}{data.frame}(
x,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
by = NULL,
drop_levels = FALSE,
weights = NULL,
remove_na = FALSE,
proportions = NULL,
collapse = FALSE,
verbose = TRUE,
...
)
\method{as.data.frame}{datawizard_tables}(
x,
row.names = NULL,
optional = FALSE,
...,
stringsAsFactors = FALSE,
add_total = FALSE
)
}
\arguments{
\item{x}{A (grouped) data frame, a vector or factor.}
\item{...}{not used.}
\item{by}{Optional vector or factor. If supplied, a crosstable is created.
If \code{x} is a data frame, \code{by} can also be a character string indicating the
name of a variable in \code{x}.}
\item{drop_levels}{Logical, if \code{FALSE}, factor levels that do not occur in
the data are included in the table (with frequency of zero), else unused
factor levels are dropped from the frequency table.}
\item{weights}{Optional numeric vector of weights. Must be of the same length
as \code{x}. If \code{weights} is supplied, weighted frequencies are calculated.}
\item{remove_na}{Logical, if \code{FALSE}, missing values are included in the
frequency or crosstable, else missing values are omitted.}
\item{proportions}{Optional character string, indicating the type of
percentages to be calculated. Only applies to crosstables, i.e. when \code{by} is
not \code{NULL}. Can be \code{"row"} (row percentages), \code{"column"} (column percentages)
or \code{"full"} (to calculate relative frequencies for the full table).}
\item{name}{Optional character string, which includes the name that is used
for printing.}
\item{verbose}{Toggle warnings.}
\item{select}{Variables that will be included when performing the required
tasks. Can be either
\itemize{
\item a variable specified as a literal variable name (e.g., \code{column_name}),
\item a string with the variable name (e.g., \code{"column_name"}), a character
vector of variable names (e.g., \code{c("col1", "col2", "col3")}), or a
character vector of variable names including ranges specified via \code{:}
(e.g., \code{c("col1:col3", "col5")}),
\item for some functions, like \code{data_select()} or \code{data_rename()}, \code{select} can
be a named character vector. In this case, the names are used to rename
the columns in the output data frame. See 'Details' in the related
functions to see where this option applies.
\item a formula with variable names (e.g., \code{~column_1 + column_2}),
\item a vector of positive integers, giving the positions counting from the left
(e.g. \code{1} or \code{c(1, 3, 5)}),
\item a vector of negative integers, giving the positions counting from the
right (e.g., \code{-1} or \code{-1:-3}),
\item one of the following select-helpers: \code{starts_with()}, \code{ends_with()},
\code{contains()}, a range using \code{:}, or \code{regex()}. \code{starts_with()},
\code{ends_with()}, and \code{contains()} accept several patterns, e.g
\code{starts_with("Sep", "Petal")}. \code{regex()} can be used to define regular
expression patterns.
\item a function testing for logical conditions, e.g. \code{is.numeric()} (or
\code{is.numeric}), or any user-defined function that selects the variables
for which the function returns \code{TRUE} (like: \code{foo <- function(x) mean(x) > 3}),
\item ranges specified via literal variable names, select-helpers (except
\code{regex()}) and (user-defined) functions can be negated, i.e. return
non-matching elements, when prefixed with a \code{-}, e.g. \code{-ends_with()},
\code{-is.numeric} or \code{-(Sepal.Width:Petal.Length)}. \strong{Note:} Negation means
that matches are \emph{excluded}, and thus, the \code{exclude} argument can be
used alternatively. For instance, \code{select=-ends_with("Length")} (with
\code{-}) is equivalent to \code{exclude=ends_with("Length")} (no \code{-}). In case
negation should not work as expected, use the \code{exclude} argument instead.
}
If \code{NULL}, selects all columns. Patterns that found no matches are silently
ignored, e.g. \code{extract_column_names(iris, select = c("Species", "Test"))}
will just return \code{"Species"}.}
\item{exclude}{See \code{select}, however, column names matched by the pattern
from \code{exclude} will be excluded instead of selected. If \code{NULL} (the default),
excludes no columns.}
\item{ignore_case}{Logical, if \code{TRUE} and when one of the select-helpers or
a regular expression is used in \code{select}, ignores lower/upper case in the
search pattern when matching against variable names.}
\item{regex}{Logical, if \code{TRUE}, the search pattern from \code{select} will be
treated as regular expression. When \code{regex = TRUE}, select \emph{must} be a
character string (or a variable containing a character string) and is not
allowed to be one of the supported select-helpers or a character vector
of length > 1. \code{regex = TRUE} is comparable to using one of the two
select-helpers, \code{select = contains()} or \code{select = regex()}, however,
since the select-helpers may not work when called from inside other
functions (see 'Details'), this argument may be used as workaround.}
\item{collapse}{Logical, if \code{TRUE} collapses multiple tables into one larger
table for printing. This affects only printing, not the returned object.}
\item{row.names}{\code{NULL} or a character vector giving the row
names for the data frame. Missing values are not allowed.}
\item{optional}{logical. If \code{TRUE}, setting row names and
converting column names (to syntactic names: see
\code{\link[base]{make.names}}) is optional. Note that all of \R's
\pkg{base} package \code{as.data.frame()} methods use
\code{optional} only for column names treatment, basically with the
meaning of \code{\link[base]{data.frame}(*, check.names = !optional)}.
See also the \code{make.names} argument of the \code{matrix} method.}
\item{stringsAsFactors}{logical: should the character vector be converted
to a factor?}
\item{add_total}{For crosstables (i.e. when \code{by} is not \code{NULL}), a row and
column with the total N values are added to the data frame. \code{add_total} has
no effect in \code{as.data.frame()} for simple frequency tables.}
}
\value{
A data frame, or a list of data frames, with one frequency table
as data frame per variable.
}
\description{
This function creates frequency or crosstables of variables,
including the number of levels/values as well as the distribution of raw,
valid and cumulative percentages. For crosstables, row, column and cell
percentages can be calculated.
}
\details{
There is an \code{as.data.frame()} method, to return the frequency tables as a
data frame. The structure of the returned object is a nested data frame,
where the first column contains name of the variable for which frequencies
were calculated, and the second column is a list column that contains the
frequency tables as data frame. See 'Examples'.
}
\note{
There are \code{print_html()} and \code{print_md()} methods available for printing
frequency or crosstables in HTML and markdown format, e.g.
\code{print_html(data_tabulate(x))}. The \code{print()} method for text outputs passes
arguments in \code{...} to \code{\link[insight:export_table]{insight::export_table()}}.
}
\section{Crosstables}{
If \code{by} is supplied, a crosstable is created. The crosstable includes \verb{<NA>}
(missing) values by default. The first column indicates values of \code{x}, the
first row indicates values of \code{by} (including missing values). The last row
and column contain the total frequencies for each row and column, respectively.
Setting \code{remove_na = FALSE} will omit missing values from the crosstable.
Setting \code{proportions} to \code{"row"} or \code{"column"} will add row or column
percentages. Setting \code{proportions} to \code{"full"} will add relative frequencies
for the full table.
}
\examples{
\dontshow{if (requireNamespace("poorman")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
# frequency tables -------
# ------------------------
data(efc)
# vector/factor
data_tabulate(efc$c172code)
# drop missing values
data_tabulate(efc$c172code, remove_na = TRUE)
# data frame
data_tabulate(efc, c("e42dep", "c172code"))
# grouped data frame
suppressPackageStartupMessages(library(poorman, quietly = TRUE))
efc \%>\%
group_by(c172code) \%>\%
data_tabulate("e16sex")
# collapse tables
efc \%>\%
group_by(c172code) \%>\%
data_tabulate("e16sex", collapse = TRUE)
# for larger N's (> 100000), a big mark is automatically added
set.seed(123)
x <- sample(1:3, 1e6, TRUE)
data_tabulate(x, name = "Large Number")
# to remove the big mark, use "print(..., big_mark = "")"
print(data_tabulate(x), big_mark = "")
# weighted frequencies
set.seed(123)
efc$weights <- abs(rnorm(n = nrow(efc), mean = 1, sd = 0.5))
data_tabulate(efc$e42dep, weights = efc$weights)
# crosstables ------
# ------------------
# add some missing values
set.seed(123)
efc$e16sex[sample.int(nrow(efc), 5)] <- NA
data_tabulate(efc, "c172code", by = "e16sex")
# add row and column percentages
data_tabulate(efc, "c172code", by = "e16sex", proportions = "row")
data_tabulate(efc, "c172code", by = "e16sex", proportions = "column")
# omit missing values
data_tabulate(
efc$c172code,
by = efc$e16sex,
proportions = "column",
remove_na = TRUE
)
# round percentages
out <- data_tabulate(efc, "c172code", by = "e16sex", proportions = "column")
print(out, digits = 0)
# coerce to data frames
result <- data_tabulate(efc, "c172code", by = "e16sex")
as.data.frame(result)
as.data.frame(result)$table
as.data.frame(result, add_total = TRUE)$table
\dontshow{\}) # examplesIf}
}
|