1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/data_to_long.R
\name{data_to_long}
\alias{data_to_long}
\alias{reshape_longer}
\title{Reshape (pivot) data from wide to long}
\usage{
data_to_long(
data,
select = "all",
names_to = "name",
names_prefix = NULL,
names_sep = NULL,
names_pattern = NULL,
values_to = "value",
values_drop_na = FALSE,
rows_to = NULL,
ignore_case = FALSE,
regex = FALSE,
...,
cols
)
reshape_longer(
data,
select = "all",
names_to = "name",
names_prefix = NULL,
names_sep = NULL,
names_pattern = NULL,
values_to = "value",
values_drop_na = FALSE,
rows_to = NULL,
ignore_case = FALSE,
regex = FALSE,
...,
cols
)
}
\arguments{
\item{data}{A data frame to convert to long format, so that it has more
rows and fewer columns after the operation.}
\item{select}{Variables that will be included when performing the required
tasks. Can be either
\itemize{
\item a variable specified as a literal variable name (e.g., \code{column_name}),
\item a string with the variable name (e.g., \code{"column_name"}), a character
vector of variable names (e.g., \code{c("col1", "col2", "col3")}), or a
character vector of variable names including ranges specified via \code{:}
(e.g., \code{c("col1:col3", "col5")}),
\item for some functions, like \code{data_select()} or \code{data_rename()}, \code{select} can
be a named character vector. In this case, the names are used to rename
the columns in the output data frame. See 'Details' in the related
functions to see where this option applies.
\item a formula with variable names (e.g., \code{~column_1 + column_2}),
\item a vector of positive integers, giving the positions counting from the left
(e.g. \code{1} or \code{c(1, 3, 5)}),
\item a vector of negative integers, giving the positions counting from the
right (e.g., \code{-1} or \code{-1:-3}),
\item one of the following select-helpers: \code{starts_with()}, \code{ends_with()},
\code{contains()}, a range using \code{:}, or \code{regex()}. \code{starts_with()},
\code{ends_with()}, and \code{contains()} accept several patterns, e.g
\code{starts_with("Sep", "Petal")}. \code{regex()} can be used to define regular
expression patterns.
\item a function testing for logical conditions, e.g. \code{is.numeric()} (or
\code{is.numeric}), or any user-defined function that selects the variables
for which the function returns \code{TRUE} (like: \code{foo <- function(x) mean(x) > 3}),
\item ranges specified via literal variable names, select-helpers (except
\code{regex()}) and (user-defined) functions can be negated, i.e. return
non-matching elements, when prefixed with a \code{-}, e.g. \code{-ends_with()},
\code{-is.numeric} or \code{-(Sepal.Width:Petal.Length)}. \strong{Note:} Negation means
that matches are \emph{excluded}, and thus, the \code{exclude} argument can be
used alternatively. For instance, \code{select=-ends_with("Length")} (with
\code{-}) is equivalent to \code{exclude=ends_with("Length")} (no \code{-}). In case
negation should not work as expected, use the \code{exclude} argument instead.
}
If \code{NULL}, selects all columns. Patterns that found no matches are silently
ignored, e.g. \code{extract_column_names(iris, select = c("Species", "Test"))}
will just return \code{"Species"}.}
\item{names_to}{The name of the new column (variable) that will contain the
\emph{names} from columns in \code{select} as values, to identify the source of the
values. \code{names_to} can be a character vector with more than one column name,
in which case \code{names_sep} or \code{names_pattern} must be provided in order to
identify which parts of the column names go into newly created columns.
See also 'Examples'.}
\item{names_prefix}{A regular expression used to remove matching text from
the start of each variable name.}
\item{names_sep, names_pattern}{If \code{names_to} contains multiple values, this
argument controls how the column name is broken up. \code{names_pattern} takes a
regular expression containing matching groups, i.e. "()".}
\item{values_to}{The name of the new column that will contain the \emph{values} of
the columns in \code{select}.}
\item{values_drop_na}{If \code{TRUE}, will drop rows that contain only \code{NA} in the
\code{values_to} column. This effectively converts explicit missing values to
implicit missing values, and should generally be used only when missing values
in data were created by its structure.}
\item{rows_to}{The name of the column that will contain the row names or row
numbers from the original data. If \code{NULL}, will be removed.}
\item{ignore_case}{Logical, if \code{TRUE} and when one of the select-helpers or
a regular expression is used in \code{select}, ignores lower/upper case in the
search pattern when matching against variable names.}
\item{regex}{Logical, if \code{TRUE}, the search pattern from \code{select} will be
treated as regular expression. When \code{regex = TRUE}, select \emph{must} be a
character string (or a variable containing a character string) and is not
allowed to be one of the supported select-helpers or a character vector
of length > 1. \code{regex = TRUE} is comparable to using one of the two
select-helpers, \code{select = contains()} or \code{select = regex()}, however,
since the select-helpers may not work when called from inside other
functions (see 'Details'), this argument may be used as workaround.}
\item{...}{Currently not used.}
\item{cols}{Identical to \code{select}. This argument is here to ensure compatibility
with \code{tidyr::pivot_longer()}. If both \code{select} and \code{cols} are provided, \code{cols}
is used.}
}
\value{
If a tibble was provided as input, \code{reshape_longer()} also returns a
tibble. Otherwise, it returns a data frame.
}
\description{
This function "lengthens" data, increasing the number of rows and decreasing
the number of columns. This is a dependency-free base-R equivalent of
\code{tidyr::pivot_longer()}.
}
\details{
Reshaping data into long format usually means that the input data frame is
in \emph{wide} format, where multiple measurements taken on the same subject are
stored in multiple columns (variables). The long format stores the same
information in a single column, with each measurement per subject stored in
a separate row. The values of all variables that are not in \code{select} will
be repeated.
The necessary information for \code{data_to_long()} is:
\itemize{
\item The columns that contain the repeated measurements (\code{select}).
\item The name of the newly created column that will contain the names of the
columns in \code{select} (\code{names_to}), to identify the source of the values.
\code{names_to} can also be a character vector with more than one column name,
in which case \code{names_sep} or \code{names_pattern} must be provided to specify
which parts of the column names go into the newly created columns.
\item The name of the newly created column that contains the values of the
columns in \code{select} (\code{values_to}).
}
In other words: repeated measurements that are spread across several columns
will be gathered into a single column (\code{values_to}), with the original column
names, that identify the source of the gathered values, stored in one or more
new columns (\code{names_to}).
}
\examples{
\dontshow{if (all(insight::check_if_installed(c("psych", "tidyr"), quietly = TRUE))) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
wide_data <- setNames(
data.frame(replicate(2, rnorm(8))),
c("Time1", "Time2")
)
wide_data$ID <- 1:8
wide_data
# Default behaviour (equivalent to tidyr::pivot_longer(wide_data, cols = 1:3))
# probably doesn't make much sense to mix "time" and "id"
data_to_long(wide_data)
# Customizing the names
data_to_long(
wide_data,
select = c("Time1", "Time2"),
names_to = "Timepoint",
values_to = "Score"
)
# Reshape multiple columns into long format.
mydat <- data.frame(
age = c(20, 30, 40),
sex = c("Female", "Male", "Male"),
score_t1 = c(30, 35, 32),
score_t2 = c(33, 34, 37),
score_t3 = c(36, 35, 38),
speed_t1 = c(2, 3, 1),
speed_t2 = c(3, 4, 5),
speed_t3 = c(1, 8, 6)
)
# The column names are split into two columns: "type" and "time". The
# pattern for splitting column names is provided in `names_pattern`. Values
# of all "score_*" and "speed_*" columns are gathered into a single column
# named "count".
data_to_long(
mydat,
select = 3:8,
names_to = c("type", "time"),
names_pattern = "(score|speed)_t(\\\\d+)",
values_to = "count"
)
# Full example
# ------------------
data <- psych::bfi # Wide format with one row per participant's personality test
# Pivot long format
very_long_data <- data_to_long(data,
select = regex("\\\\d"), # Select all columns that contain a digit
names_to = "Item",
values_to = "Score",
rows_to = "Participant"
)
head(very_long_data)
even_longer_data <- data_to_long(
tidyr::who,
select = new_sp_m014:newrel_f65,
names_to = c("diagnosis", "gender", "age"),
names_pattern = "new_?(.*)_(.)(.*)",
values_to = "count"
)
head(even_longer_data)
\dontshow{\}) # examplesIf}
}
\seealso{
\itemize{
\item Add a prefix or suffix to column names: \code{\link[=data_addprefix]{data_addprefix()}}, \code{\link[=data_addsuffix]{data_addsuffix()}}
\item Functions to reorder or remove columns: \code{\link[=data_reorder]{data_reorder()}}, \code{\link[=data_relocate]{data_relocate()}},
\code{\link[=data_remove]{data_remove()}}
\item Functions to reshape, pivot or rotate data frames: \code{\link[=data_to_long]{data_to_long()}},
\code{\link[=data_to_wide]{data_to_wide()}}, \code{\link[=data_rotate]{data_rotate()}}
\item Functions to recode data: \code{\link[=rescale]{rescale()}}, \code{\link[=reverse]{reverse()}}, \code{\link[=categorize]{categorize()}},
\code{\link[=recode_values]{recode_values()}}, \code{\link[=slide]{slide()}}
\item Functions to standardize, normalize, rank-transform: \code{\link[=center]{center()}}, \code{\link[=standardize]{standardize()}},
\code{\link[=normalize]{normalize()}}, \code{\link[=ranktransform]{ranktransform()}}, \code{\link[=winsorize]{winsorize()}}
\item Split and merge data frames: \code{\link[=data_partition]{data_partition()}}, \code{\link[=data_merge]{data_merge()}}
\item Functions to find or select columns: \code{\link[=data_select]{data_select()}}, \code{\link[=extract_column_names]{extract_column_names()}}
\item Functions to filter rows: \code{\link[=data_match]{data_match()}}, \code{\link[=data_filter]{data_filter()}}
}
}
|