File: describe_distribution.Rd

package info (click to toggle)
r-cran-datawizard 1.0.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,300 kB
  • sloc: sh: 13; makefile: 2
file content (178 lines) | stat: -rw-r--r-- 7,767 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/describe_distribution.R
\name{describe_distribution}
\alias{describe_distribution}
\alias{describe_distribution.numeric}
\alias{describe_distribution.factor}
\alias{describe_distribution.data.frame}
\title{Describe a distribution}
\usage{
describe_distribution(x, ...)

\method{describe_distribution}{numeric}(
  x,
  centrality = "mean",
  dispersion = TRUE,
  iqr = TRUE,
  range = TRUE,
  quartiles = FALSE,
  ci = NULL,
  iterations = 100,
  threshold = 0.1,
  verbose = TRUE,
  ...
)

\method{describe_distribution}{factor}(x, dispersion = TRUE, range = TRUE, verbose = TRUE, ...)

\method{describe_distribution}{data.frame}(
  x,
  select = NULL,
  exclude = NULL,
  centrality = "mean",
  dispersion = TRUE,
  iqr = TRUE,
  range = TRUE,
  quartiles = FALSE,
  include_factors = FALSE,
  ci = NULL,
  iterations = 100,
  threshold = 0.1,
  ignore_case = FALSE,
  regex = FALSE,
  verbose = TRUE,
  ...
)
}
\arguments{
\item{x}{A numeric vector, a character vector, a data frame, or a list. See
\code{Details}.}

\item{...}{Additional arguments to be passed to or from methods.}

\item{centrality}{The point-estimates (centrality indices) to compute. Character
(vector) or list with one or more of these options: \code{"median"}, \code{"mean"}, \code{"MAP"}
(see \code{\link[bayestestR:map_estimate]{map_estimate()}}), \code{"trimmed"} (which is just \code{mean(x, trim = threshold)}),
\code{"mode"} or \code{"all"}.}

\item{dispersion}{Logical, if \code{TRUE}, computes indices of dispersion related
to the estimate(s) (\code{SD} and \code{MAD} for \code{mean} and \code{median}, respectively).
Dispersion is not available for \code{"MAP"} or \code{"mode"} centrality indices.}

\item{iqr}{Logical, if \code{TRUE}, the interquartile range is calculated
(based on \code{\link[stats:IQR]{stats::IQR()}}, using \code{type = 6}).}

\item{range}{Return the range (min and max).}

\item{quartiles}{Return the first and third quartiles (25th and 75pth
percentiles).}

\item{ci}{Confidence Interval (CI) level. Default is \code{NULL}, i.e. no
confidence intervals are computed. If not \code{NULL}, confidence intervals
are based on bootstrap replicates (see \code{iterations}). If
\code{centrality = "all"}, the bootstrapped confidence interval refers to
the first centrality index (which is typically the median).}

\item{iterations}{The number of bootstrap replicates for computing confidence
intervals. Only applies when \code{ci} is not \code{NULL}.}

\item{threshold}{For \code{centrality = "trimmed"} (i.e. trimmed mean), indicates
the fraction (0 to 0.5) of observations to be trimmed from each end of the
vector before the mean is computed.}

\item{verbose}{Toggle warnings and messages.}

\item{select}{Variables that will be included when performing the required
tasks. Can be either
\itemize{
\item a variable specified as a literal variable name (e.g., \code{column_name}),
\item a string with the variable name (e.g., \code{"column_name"}), a character
vector of variable names (e.g., \code{c("col1", "col2", "col3")}), or a
character vector of variable names including ranges specified via \code{:}
(e.g., \code{c("col1:col3", "col5")}),
\item for some functions, like \code{data_select()} or \code{data_rename()}, \code{select} can
be a named character vector. In this case, the names are used to rename
the columns in the output data frame. See 'Details' in the related
functions to see where this option applies.
\item a formula with variable names (e.g., \code{~column_1 + column_2}),
\item a vector of positive integers, giving the positions counting from the left
(e.g. \code{1} or \code{c(1, 3, 5)}),
\item a vector of negative integers, giving the positions counting from the
right (e.g., \code{-1} or \code{-1:-3}),
\item one of the following select-helpers: \code{starts_with()}, \code{ends_with()},
\code{contains()}, a range using \code{:}, or \code{regex()}. \code{starts_with()},
\code{ends_with()}, and  \code{contains()} accept several patterns, e.g
\code{starts_with("Sep", "Petal")}. \code{regex()} can be used to define regular
expression patterns.
\item a function testing for logical conditions, e.g. \code{is.numeric()} (or
\code{is.numeric}), or any user-defined function that selects the variables
for which the function returns \code{TRUE} (like: \code{foo <- function(x) mean(x) > 3}),
\item ranges specified via literal variable names, select-helpers (except
\code{regex()}) and (user-defined) functions can be negated, i.e. return
non-matching elements, when prefixed with a \code{-}, e.g. \code{-ends_with()},
\code{-is.numeric} or \code{-(Sepal.Width:Petal.Length)}. \strong{Note:} Negation means
that matches are \emph{excluded}, and thus, the \code{exclude} argument can be
used alternatively. For instance, \code{select=-ends_with("Length")} (with
\code{-}) is equivalent to \code{exclude=ends_with("Length")} (no \code{-}). In case
negation should not work as expected, use the \code{exclude} argument instead.
}

If \code{NULL}, selects all columns. Patterns that found no matches are silently
ignored, e.g. \code{extract_column_names(iris, select = c("Species", "Test"))}
will just return \code{"Species"}.}

\item{exclude}{See \code{select}, however, column names matched by the pattern
from \code{exclude} will be excluded instead of selected. If \code{NULL} (the default),
excludes no columns.}

\item{include_factors}{Logical, if \code{TRUE}, factors are included in the
output, however, only columns for range (first and last factor levels) as
well as n and missing will contain information.}

\item{ignore_case}{Logical, if \code{TRUE} and when one of the select-helpers or
a regular expression is used in \code{select}, ignores lower/upper case in the
search pattern when matching against variable names.}

\item{regex}{Logical, if \code{TRUE}, the search pattern from \code{select} will be
treated as regular expression. When \code{regex = TRUE}, select \emph{must} be a
character string (or a variable containing a character string) and is not
allowed to be one of the supported select-helpers or a character vector
of length > 1. \code{regex = TRUE} is comparable to using one of the two
select-helpers, \code{select = contains()} or \code{select = regex()}, however,
since the select-helpers may not work when called from inside other
functions (see 'Details'), this argument may be used as workaround.}
}
\value{
A data frame with columns that describe the properties of the variables.
}
\description{
This function describes a distribution by a set of indices (e.g., measures of
centrality, dispersion, range, skewness, kurtosis).
}
\details{
If \code{x} is a data frame, only numeric variables are kept and will be
displayed in the summary.

If \code{x} is a list, the behavior is different whether \code{x} is a stored list. If
\code{x} is stored (for example, \code{describe_distribution(mylist)} where \code{mylist}
was created before), artificial variable names are used in the summary
(\code{Var_1}, \code{Var_2}, etc.). If \code{x} is an unstored list (for example,
\code{describe_distribution(list(mtcars$mpg))}), then \code{"mtcars$mpg"} is used as
variable name.
}
\note{
There is also a
\href{https://easystats.github.io/see/articles/parameters.html}{\code{plot()}-method}
implemented in the
\href{https://easystats.github.io/see/}{\pkg{see}-package}.
}
\examples{
\dontshow{if (require("bayestestR", quietly = TRUE)) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
describe_distribution(rnorm(100))

data(iris)
describe_distribution(iris)
describe_distribution(iris, include_factors = TRUE, quartiles = TRUE)
describe_distribution(list(mtcars$mpg, mtcars$cyl))
\dontshow{\}) # examplesIf}
}