File: extract_column_names.Rd

package info (click to toggle)
r-cran-datawizard 1.0.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,300 kB
  • sloc: sh: 13; makefile: 2
file content (199 lines) | stat: -rw-r--r-- 8,537 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/data_select.R, R/extract_column_names.R
\name{data_select}
\alias{data_select}
\alias{extract_column_names}
\alias{find_columns}
\title{Find or get columns in a data frame based on search patterns}
\usage{
data_select(
  data,
  select = NULL,
  exclude = NULL,
  ignore_case = FALSE,
  regex = FALSE,
  verbose = TRUE,
  ...
)

extract_column_names(
  data,
  select = NULL,
  exclude = NULL,
  ignore_case = FALSE,
  regex = FALSE,
  verbose = TRUE,
  ...
)

find_columns(
  data,
  select = NULL,
  exclude = NULL,
  ignore_case = FALSE,
  regex = FALSE,
  verbose = TRUE,
  ...
)
}
\arguments{
\item{data}{A data frame.}

\item{select}{Variables that will be included when performing the required
tasks. Can be either
\itemize{
\item a variable specified as a literal variable name (e.g., \code{column_name}),
\item a string with the variable name (e.g., \code{"column_name"}), a character
vector of variable names (e.g., \code{c("col1", "col2", "col3")}), or a
character vector of variable names including ranges specified via \code{:}
(e.g., \code{c("col1:col3", "col5")}),
\item for some functions, like \code{data_select()} or \code{data_rename()}, \code{select} can
be a named character vector. In this case, the names are used to rename
the columns in the output data frame. See 'Details' in the related
functions to see where this option applies.
\item a formula with variable names (e.g., \code{~column_1 + column_2}),
\item a vector of positive integers, giving the positions counting from the left
(e.g. \code{1} or \code{c(1, 3, 5)}),
\item a vector of negative integers, giving the positions counting from the
right (e.g., \code{-1} or \code{-1:-3}),
\item one of the following select-helpers: \code{starts_with()}, \code{ends_with()},
\code{contains()}, a range using \code{:}, or \code{regex()}. \code{starts_with()},
\code{ends_with()}, and  \code{contains()} accept several patterns, e.g
\code{starts_with("Sep", "Petal")}. \code{regex()} can be used to define regular
expression patterns.
\item a function testing for logical conditions, e.g. \code{is.numeric()} (or
\code{is.numeric}), or any user-defined function that selects the variables
for which the function returns \code{TRUE} (like: \code{foo <- function(x) mean(x) > 3}),
\item ranges specified via literal variable names, select-helpers (except
\code{regex()}) and (user-defined) functions can be negated, i.e. return
non-matching elements, when prefixed with a \code{-}, e.g. \code{-ends_with()},
\code{-is.numeric} or \code{-(Sepal.Width:Petal.Length)}. \strong{Note:} Negation means
that matches are \emph{excluded}, and thus, the \code{exclude} argument can be
used alternatively. For instance, \code{select=-ends_with("Length")} (with
\code{-}) is equivalent to \code{exclude=ends_with("Length")} (no \code{-}). In case
negation should not work as expected, use the \code{exclude} argument instead.
}

If \code{NULL}, selects all columns. Patterns that found no matches are silently
ignored, e.g. \code{extract_column_names(iris, select = c("Species", "Test"))}
will just return \code{"Species"}.}

\item{exclude}{See \code{select}, however, column names matched by the pattern
from \code{exclude} will be excluded instead of selected. If \code{NULL} (the default),
excludes no columns.}

\item{ignore_case}{Logical, if \code{TRUE} and when one of the select-helpers or
a regular expression is used in \code{select}, ignores lower/upper case in the
search pattern when matching against variable names.}

\item{regex}{Logical, if \code{TRUE}, the search pattern from \code{select} will be
treated as regular expression. When \code{regex = TRUE}, select \emph{must} be a
character string (or a variable containing a character string) and is not
allowed to be one of the supported select-helpers or a character vector
of length > 1. \code{regex = TRUE} is comparable to using one of the two
select-helpers, \code{select = contains()} or \code{select = regex()}, however,
since the select-helpers may not work when called from inside other
functions (see 'Details'), this argument may be used as workaround.}

\item{verbose}{Toggle warnings.}

\item{...}{Arguments passed down to other functions. Mostly not used yet.}
}
\value{
\code{extract_column_names()} returns a character vector with column names that
matched the pattern in \code{select} and \code{exclude}, or \code{NULL} if no matching
column name was found. \code{data_select()} returns a data frame with matching
columns.
}
\description{
\code{extract_column_names()} returns column names from a data set that
match a certain search pattern, while \code{data_select()} returns the found data.
}
\details{
Specifically for \code{data_select()}, \code{select} can also be a named character
vector. In this case, the names are used to rename the columns in the
output data frame. See 'Examples'.

Note that it is possible to either pass an entire select helper or only the
pattern inside a select helper as a function argument:

\if{html}{\out{<div class="sourceCode r">}}\preformatted{foo <- function(data, pattern) \{
  extract_column_names(data, select = starts_with(pattern))
\}
foo(iris, pattern = "Sep")

foo2 <- function(data, pattern) \{
  extract_column_names(data, select = pattern)
\}
foo2(iris, pattern = starts_with("Sep"))
}\if{html}{\out{</div>}}

This means that it is also possible to use loop values as arguments or patterns:

\if{html}{\out{<div class="sourceCode r">}}\preformatted{for (i in c("Sepal", "Sp")) \{
  head(iris) |>
    extract_column_names(select = starts_with(i)) |>
    print()
\}
}\if{html}{\out{</div>}}

However, this behavior is limited to a "single-level function". It will not
work in nested functions, like below:

\if{html}{\out{<div class="sourceCode r">}}\preformatted{inner <- function(data, arg) \{
  extract_column_names(data, select = arg)
\}
outer <- function(data, arg) \{
  inner(data, starts_with(arg))
\}
outer(iris, "Sep")
}\if{html}{\out{</div>}}

In this case, it is better to pass the whole select helper as the argument of
\code{outer()}:

\if{html}{\out{<div class="sourceCode r">}}\preformatted{outer <- function(data, arg) \{
  inner(data, arg)
\}
outer(iris, starts_with("Sep"))
}\if{html}{\out{</div>}}
}
\examples{
# Find column names by pattern
extract_column_names(iris, starts_with("Sepal"))
extract_column_names(iris, ends_with("Width"))
extract_column_names(iris, regex("\\\\."))
extract_column_names(iris, c("Petal.Width", "Sepal.Length"))

# starts with "Sepal", but not allowed to end with "width"
extract_column_names(iris, starts_with("Sepal"), exclude = contains("Width"))

# find numeric with mean > 3.5
numeric_mean_35 <- function(x) is.numeric(x) && mean(x, na.rm = TRUE) > 3.5
extract_column_names(iris, numeric_mean_35)

# find column names, using range
extract_column_names(mtcars, c(cyl:hp, wt))

# find range of column names by range, using character vector
extract_column_names(mtcars, c("cyl:hp", "wt"))

# rename returned columns for "data_select()"
head(data_select(mtcars, c(`Miles per Gallon` = "mpg", Cylinders = "cyl")))
}
\seealso{
\itemize{
\item Add a prefix or suffix to column names: \code{\link[=data_addprefix]{data_addprefix()}}, \code{\link[=data_addsuffix]{data_addsuffix()}}
\item Functions to reorder or remove columns: \code{\link[=data_reorder]{data_reorder()}}, \code{\link[=data_relocate]{data_relocate()}},
\code{\link[=data_remove]{data_remove()}}
\item Functions to reshape, pivot or rotate data frames: \code{\link[=data_to_long]{data_to_long()}},
\code{\link[=data_to_wide]{data_to_wide()}}, \code{\link[=data_rotate]{data_rotate()}}
\item Functions to recode data: \code{\link[=rescale]{rescale()}}, \code{\link[=reverse]{reverse()}}, \code{\link[=categorize]{categorize()}},
\code{\link[=recode_values]{recode_values()}}, \code{\link[=slide]{slide()}}
\item Functions to standardize, normalize, rank-transform: \code{\link[=center]{center()}}, \code{\link[=standardize]{standardize()}},
\code{\link[=normalize]{normalize()}}, \code{\link[=ranktransform]{ranktransform()}}, \code{\link[=winsorize]{winsorize()}}
\item Split and merge data frames: \code{\link[=data_partition]{data_partition()}}, \code{\link[=data_merge]{data_merge()}}
\item Functions to find or select columns: \code{\link[=data_select]{data_select()}}, \code{\link[=extract_column_names]{extract_column_names()}}
\item Functions to filter rows: \code{\link[=data_match]{data_match()}}, \code{\link[=data_filter]{data_filter()}}
}
}