1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/row_means.R
\name{row_means}
\alias{row_means}
\alias{row_sums}
\title{Row means or sums (optionally with minimum amount of valid values)}
\usage{
row_means(
data,
select = NULL,
exclude = NULL,
min_valid = NULL,
digits = NULL,
ignore_case = FALSE,
regex = FALSE,
remove_na = FALSE,
verbose = TRUE
)
row_sums(
data,
select = NULL,
exclude = NULL,
min_valid = NULL,
digits = NULL,
ignore_case = FALSE,
regex = FALSE,
remove_na = FALSE,
verbose = TRUE
)
}
\arguments{
\item{data}{A data frame with at least two columns, where row means or row
sums are applied.}
\item{select}{Variables that will be included when performing the required
tasks. Can be either
\itemize{
\item a variable specified as a literal variable name (e.g., \code{column_name}),
\item a string with the variable name (e.g., \code{"column_name"}), a character
vector of variable names (e.g., \code{c("col1", "col2", "col3")}), or a
character vector of variable names including ranges specified via \code{:}
(e.g., \code{c("col1:col3", "col5")}),
\item for some functions, like \code{data_select()} or \code{data_rename()}, \code{select} can
be a named character vector. In this case, the names are used to rename
the columns in the output data frame. See 'Details' in the related
functions to see where this option applies.
\item a formula with variable names (e.g., \code{~column_1 + column_2}),
\item a vector of positive integers, giving the positions counting from the left
(e.g. \code{1} or \code{c(1, 3, 5)}),
\item a vector of negative integers, giving the positions counting from the
right (e.g., \code{-1} or \code{-1:-3}),
\item one of the following select-helpers: \code{starts_with()}, \code{ends_with()},
\code{contains()}, a range using \code{:}, or \code{regex()}. \code{starts_with()},
\code{ends_with()}, and \code{contains()} accept several patterns, e.g
\code{starts_with("Sep", "Petal")}. \code{regex()} can be used to define regular
expression patterns.
\item a function testing for logical conditions, e.g. \code{is.numeric()} (or
\code{is.numeric}), or any user-defined function that selects the variables
for which the function returns \code{TRUE} (like: \code{foo <- function(x) mean(x) > 3}),
\item ranges specified via literal variable names, select-helpers (except
\code{regex()}) and (user-defined) functions can be negated, i.e. return
non-matching elements, when prefixed with a \code{-}, e.g. \code{-ends_with()},
\code{-is.numeric} or \code{-(Sepal.Width:Petal.Length)}. \strong{Note:} Negation means
that matches are \emph{excluded}, and thus, the \code{exclude} argument can be
used alternatively. For instance, \code{select=-ends_with("Length")} (with
\code{-}) is equivalent to \code{exclude=ends_with("Length")} (no \code{-}). In case
negation should not work as expected, use the \code{exclude} argument instead.
}
If \code{NULL}, selects all columns. Patterns that found no matches are silently
ignored, e.g. \code{extract_column_names(iris, select = c("Species", "Test"))}
will just return \code{"Species"}.}
\item{exclude}{See \code{select}, however, column names matched by the pattern
from \code{exclude} will be excluded instead of selected. If \code{NULL} (the default),
excludes no columns.}
\item{min_valid}{Optional, a numeric value of length 1. May either be
\itemize{
\item a numeric value that indicates the amount of valid values per row to
calculate the row mean or row sum;
\item or a value between \code{0} and \code{1}, indicating a proportion of valid values per
row to calculate the row mean or row sum (see 'Details').
\item \code{NULL} (default), in which all cases are considered.
}
If a row's sum of valid values is less than \code{min_valid}, \code{NA} will be returned.}
\item{digits}{Numeric value indicating the number of decimal places to be
used for rounding mean values. Negative values are allowed (see 'Details').
By default, \code{digits = NULL} and no rounding is used.}
\item{ignore_case}{Logical, if \code{TRUE} and when one of the select-helpers or
a regular expression is used in \code{select}, ignores lower/upper case in the
search pattern when matching against variable names.}
\item{regex}{Logical, if \code{TRUE}, the search pattern from \code{select} will be
treated as regular expression. When \code{regex = TRUE}, select \emph{must} be a
character string (or a variable containing a character string) and is not
allowed to be one of the supported select-helpers or a character vector
of length > 1. \code{regex = TRUE} is comparable to using one of the two
select-helpers, \code{select = contains()} or \code{select = regex()}, however,
since the select-helpers may not work when called from inside other
functions (see 'Details'), this argument may be used as workaround.}
\item{remove_na}{Logical, if \code{TRUE} (default), removes missing (\code{NA}) values
before calculating row means or row sums. Only applies if \code{min_valid} is not
specified.}
\item{verbose}{Toggle warnings.}
}
\value{
A vector with row means (for \code{row_means()}) or row sums (for
\code{row_sums()}) for those rows with at least \code{n} valid values.
}
\description{
This function is similar to the SPSS \code{MEAN.n} or \code{SUM.n}
function and computes row means or row sums from a data frame or matrix if at
least \code{min_valid} values of a row are valid (and not \code{NA}).
}
\details{
Rounding to a negative number of \code{digits} means rounding to a power
of ten, for example \code{row_means(df, 3, digits = -2)} rounds to the nearest
hundred. For \code{min_valid}, if not \code{NULL}, \code{min_valid} must be a numeric value
from \code{0} to \code{ncol(data)}. If a row in the data frame has at least \code{min_valid}
non-missing values, the row mean or row sum is returned. If \code{min_valid} is a
non-integer value from 0 to 1, \code{min_valid} is considered to indicate the
proportion of required non-missing values per row. E.g., if
\code{min_valid = 0.75}, a row must have at least \code{ncol(data) * min_valid}
non-missing values for the row mean or row sum to be calculated. See
'Examples'.
}
\examples{
dat <- data.frame(
c1 = c(1, 2, NA, 4),
c2 = c(NA, 2, NA, 5),
c3 = c(NA, 4, NA, NA),
c4 = c(2, 3, 7, 8)
)
# default, all means are shown, if no NA values are present
row_means(dat)
# remove all NA before computing row means
row_means(dat, remove_na = TRUE)
# needs at least 4 non-missing values per row
row_means(dat, min_valid = 4) # 1 valid return value
row_sums(dat, min_valid = 4) # 1 valid return value
# needs at least 3 non-missing values per row
row_means(dat, min_valid = 3) # 2 valid return values
# needs at least 2 non-missing values per row
row_means(dat, min_valid = 2)
# needs at least 1 non-missing value per row, for two selected variables
row_means(dat, select = c("c1", "c3"), min_valid = 1)
# needs at least 50\% of non-missing values per row
row_means(dat, min_valid = 0.5) # 3 valid return values
row_sums(dat, min_valid = 0.5)
# needs at least 75\% of non-missing values per row
row_means(dat, min_valid = 0.75) # 2 valid return values
}
|