File: test-unnormalize.R

package info (click to toggle)
r-cran-datawizard 1.0.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,300 kB
  • sloc: sh: 13; makefile: 2
file content (131 lines) | stat: -rw-r--r-- 3,557 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
test_that("unnormalize work as expected", {
  x <- normalize(c(0, 1, 5, -5, -2))
  expect_equal(
    unnormalize(x),
    c(0, 1, 5, -5, -2),
    ignore_attr = TRUE
  )
  expect_error(
    unnormalize(c(0, 1, 5, -5, -2)),
    "Can't unnormalize variable"
  )
})

test_that("unnormalize error if not supported", {
  expect_error(
    unnormalize(c("a", "b")),
    "can't be unnormalized"
  )
})

test_that("unnormalize and unstandardized x 4", {
  set.seed(123)
  x <- rnorm(6, 4, 10)

  z <- standardise(x)
  expect_named(attributes(z), c("center", "scale", "robust", "class"))
  expect_equal(attributes(z)$center, 8.47, tolerance = 0.01)
  expect_equal(unstandardise(z), x, ignore_attr = TRUE)

  z <- center(x)
  expect_named(attributes(z), c("center", "scale", "robust", "class"))
  expect_equal(unstandardise(z), x, ignore_attr = TRUE)


  z <- normalize(x)
  expect_named(attributes(z), c(
    "include_bounds", "flag_bounds", "min_value",
    "vector_length", "range_difference", "class"
  ))
  expect_equal(unnormalize(z), x, ignore_attr = TRUE)

  z <- change_scale(x, to = c(-3, 14.5))
  expect_named(attributes(z), c(
    "min_value", "max_value", "new_min", "new_max",
    "range_difference", "to_range", "class"
  ))
  expect_equal(unnormalize(z), x, ignore_attr = TRUE)

  z <- change_scale(x, range = c(-100, 100))
  expect_named(attributes(z), c(
    "min_value", "max_value", "new_min", "new_max",
    "range_difference", "to_range", "class"
  ))
  expect_equal(unnormalize(z), x, ignore_attr = TRUE)
})

# select helpers ------------------------------
test_that("unnormalize regex", {
  x <- normalize(mtcars, select = "mpg")
  expect_identical(
    unnormalize(x, select = "pg", regex = TRUE),
    unnormalize(x, select = "mpg")
  )
})


test_that("unnormalize: grouped data", {
  skip_if_not_installed("poorman")

  # 1 group, 1 normalized var
  norm <- poorman::group_by(mtcars, cyl)
  norm <- normalize(norm, "mpg")
  expect_identical(
    poorman::ungroup(unnormalize(norm, "mpg")),
    mtcars,
    ignore_attr = TRUE # unnormalize removed rownames
  )

  # 2 groups, 1 normalized var
  set.seed(123)
  test <- iris
  test$grp <- sample(c("A", "B"), nrow(test), replace = TRUE)
  norm <- poorman::group_by(test, Species, grp)
  norm <- normalize(norm, "Sepal.Length")
  expect_identical(
    poorman::ungroup(unnormalize(norm, "Sepal.Length")),
    test
  )

  # 2 groups, 2 normalized vars
  set.seed(123)
  test <- iris
  test$grp <- sample(c("A", "B"), nrow(test), replace = TRUE)
  norm <- poorman::group_by(test, Species, grp)
  norm <- normalize(norm, c("Sepal.Length", "Petal.Length"))
  unnorm <- unnormalize(norm, c("Sepal.Length", "Petal.Length"))
  expect_identical(
    poorman::ungroup(unnorm),
    test
  )

  expect_s3_class(unnorm, "grouped_df")

  # can't recover attributes
  norm <- poorman::group_by(iris, Species)
  norm <- normalize(norm, "Sepal.Length")
  attr(norm, "groups") <- NULL

  expect_error(
    unnormalize(norm, "Sepal.Length"),
    regexp = "Couldn't retrieve the necessary information"
  )

  # normalize applied on grouped data but unnormalize applied on ungrouped data
  norm <- poorman::group_by(mtcars, cyl)
  norm <- normalize(norm, "mpg")
  norm <- poorman::ungroup(norm)

  expect_error(
    unnormalize(norm, "mpg"),
    regexp = "Can't unnormalize variable"
  )

  # normalize applied on grouped data but unnormalize applied different grouped
  # data
  norm <- poorman::group_by(norm, am)
  expect_error(
    unnormalize(norm, "mpg"),
    regexp = "Couldn't retrieve the necessary"
  )
})