1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/verb-joins.R
\name{join.tbl_sql}
\alias{join.tbl_sql}
\alias{inner_join.tbl_lazy}
\alias{left_join.tbl_lazy}
\alias{right_join.tbl_lazy}
\alias{full_join.tbl_lazy}
\alias{semi_join.tbl_lazy}
\alias{anti_join.tbl_lazy}
\title{Join SQL tables}
\usage{
\method{inner_join}{tbl_lazy}(
x,
y,
by = NULL,
copy = FALSE,
suffix = NULL,
auto_index = FALSE,
...,
sql_on = NULL,
na_matches = c("never", "na"),
x_as = NULL,
y_as = NULL
)
\method{left_join}{tbl_lazy}(
x,
y,
by = NULL,
copy = FALSE,
suffix = NULL,
auto_index = FALSE,
...,
sql_on = NULL,
na_matches = c("never", "na"),
x_as = NULL,
y_as = NULL
)
\method{right_join}{tbl_lazy}(
x,
y,
by = NULL,
copy = FALSE,
suffix = NULL,
auto_index = FALSE,
...,
sql_on = NULL,
na_matches = c("never", "na"),
x_as = NULL,
y_as = NULL
)
\method{full_join}{tbl_lazy}(
x,
y,
by = NULL,
copy = FALSE,
suffix = NULL,
auto_index = FALSE,
...,
sql_on = NULL,
na_matches = c("never", "na"),
x_as = NULL,
y_as = NULL
)
\method{semi_join}{tbl_lazy}(
x,
y,
by = NULL,
copy = FALSE,
auto_index = FALSE,
...,
sql_on = NULL,
na_matches = c("never", "na"),
x_as = NULL,
y_as = NULL
)
\method{anti_join}{tbl_lazy}(
x,
y,
by = NULL,
copy = FALSE,
auto_index = FALSE,
...,
sql_on = NULL,
na_matches = c("never", "na"),
x_as = NULL,
y_as = NULL
)
}
\arguments{
\item{x, y}{A pair of lazy data frames backed by database queries.}
\item{by}{A character vector of variables to join by.
If \code{NULL}, the default, \verb{*_join()} will perform a natural join, using all
variables in common across \code{x} and \code{y}. A message lists the variables so that you
can check they're correct; suppress the message by supplying \code{by} explicitly.
To join by different variables on \code{x} and \code{y}, use a named vector.
For example, \code{by = c("a" = "b")} will match \code{x$a} to \code{y$b}.
To join by multiple variables, use a vector with length > 1.
For example, \code{by = c("a", "b")} will match \code{x$a} to \code{y$a} and \code{x$b} to
\code{y$b}. Use a named vector to match different variables in \code{x} and \code{y}.
For example, \code{by = c("a" = "b", "c" = "d")} will match \code{x$a} to \code{y$b} and
\code{x$c} to \code{y$d}.
To perform a cross-join, generating all combinations of \code{x} and \code{y},
use \code{by = character()}.}
\item{copy}{If \code{x} and \code{y} are not from the same data source,
and \code{copy} is \code{TRUE}, then \code{y} will be copied into a
temporary table in same database as \code{x}. \verb{*_join()} will automatically
run \code{ANALYZE} on the created table in the hope that this will make
you queries as efficient as possible by giving more data to the query
planner.
This allows you to join tables across srcs, but it's potentially expensive
operation so you must opt into it.}
\item{suffix}{If there are non-joined duplicate variables in \code{x} and
\code{y}, these suffixes will be added to the output to disambiguate them.
Should be a character vector of length 2.}
\item{auto_index}{if \code{copy} is \code{TRUE}, automatically create
indices for the variables in \code{by}. This may speed up the join if
there are matching indexes in \code{x}.}
\item{...}{Other parameters passed onto methods.}
\item{sql_on}{A custom join predicate as an SQL expression.
Usually joins use column equality, but you can perform more complex
queries by supply \code{sql_on} which should be a SQL expression that
uses \code{LHS} and \code{RHS} aliases to refer to the left-hand side or
right-hand side of the join respectively.}
\item{na_matches}{Should NA (NULL) values match one another?
The default, "never", is how databases usually work. \code{"na"} makes
the joins behave like the dplyr join functions, \code{\link[=merge]{merge()}}, \code{\link[=match]{match()}},
and \code{\%in\%}.}
\item{x_as, y_as}{Alias to use for \code{x} resp. \code{y}. Defaults to \code{"LHS"} resp.
\code{"RHS"}}
}
\value{
Another \code{tbl_lazy}. Use \code{\link[=show_query]{show_query()}} to see the generated
query, and use \code{\link[=collect.tbl_sql]{collect()}} to execute the query
and return data to R.
}
\description{
These are methods for the dplyr \link{join} generics. They are translated
to the following SQL queries:
\itemize{
\item \code{inner_join(x, y)}: \verb{SELECT * FROM x JOIN y ON x.a = y.a}
\item \code{left_join(x, y)}: \verb{SELECT * FROM x LEFT JOIN y ON x.a = y.a}
\item \code{right_join(x, y)}: \verb{SELECT * FROM x RIGHT JOIN y ON x.a = y.a}
\item \code{full_join(x, y)}: \verb{SELECT * FROM x FULL JOIN y ON x.a = y.a}
\item \code{semi_join(x, y)}: \verb{SELECT * FROM x WHERE EXISTS (SELECT 1 FROM y WHERE x.a = y.a)}
\item \code{anti_join(x, y)}: \verb{SELECT * FROM x WHERE NOT EXISTS (SELECT 1 FROM y WHERE x.a = y.a)}
}
}
\examples{
library(dplyr, warn.conflicts = FALSE)
band_db <- tbl_memdb(dplyr::band_members)
instrument_db <- tbl_memdb(dplyr::band_instruments)
band_db \%>\% left_join(instrument_db) \%>\% show_query()
# Can join with local data frames by setting copy = TRUE
band_db \%>\%
left_join(dplyr::band_instruments, copy = TRUE)
# Unlike R, joins in SQL don't usually match NAs (NULLs)
db <- memdb_frame(x = c(1, 2, NA))
label <- memdb_frame(x = c(1, NA), label = c("one", "missing"))
db \%>\% left_join(label, by = "x")
# But you can activate R's usual behaviour with the na_matches argument
db \%>\% left_join(label, by = "x", na_matches = "na")
# By default, joins are equijoins, but you can use `sql_on` to
# express richer relationships
db1 <- memdb_frame(x = 1:5)
db2 <- memdb_frame(x = 1:3, y = letters[1:3])
db1 \%>\% left_join(db2) \%>\% show_query()
db1 \%>\% left_join(db2, sql_on = "LHS.x < RHS.x") \%>\% show_query()
}
|