File: backend-teradata.md

package info (click to toggle)
r-cran-dbplyr 2.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 2,376 kB
  • sloc: sh: 13; makefile: 2
file content (64 lines) | stat: -rw-r--r-- 1,356 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# generates custom sql

    Code
      sql_table_analyze(con, in_schema("schema", "tbl"))
    Output
      <SQL> COLLECT STATISTICS `schema`.`tbl`

# head translated to TOP

    Code
      mf %>% head() %>% sql_render()
    Output
      <SQL> SELECT TOP 6 *
      FROM `df`

# lead, lag work

    Code
      mf %>% group_by(y) %>% mutate(val2 = lead(x, order_by = x)) %>% sql_render()
    Output
      <SQL> SELECT
        `x`,
        `y`,
        LEAD(`x`, 1, NULL) OVER (PARTITION BY `y` ORDER BY `x`) AS `val2`
      FROM `df`

---

    Code
      mf %>% group_by(y) %>% mutate(val2 = lag(x, order_by = x)) %>% sql_render()
    Output
      <SQL> SELECT
        `x`,
        `y`,
        LAG(`x`, 1, NULL) OVER (PARTITION BY `y` ORDER BY `x`) AS `val2`
      FROM `df`

# weighted.mean

    Code
      mf %>% summarise(wt_mean = weighted.mean(x, y))
    Output
      <SQL>
      SELECT SUM((`x` * `y`)) / SUM(`y`) OVER () AS `wt_mean`
      FROM `df`

# row_number with and without group_by

    Code
      mf %>% mutate(rown = row_number())
    Output
      <SQL>
      SELECT `x`, `y`, ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS `rown`
      FROM `df`

---

    Code
      mf %>% group_by(y) %>% mutate(rown = row_number())
    Output
      <SQL>
      SELECT `x`, `y`, ROW_NUMBER() OVER (PARTITION BY `y` ORDER BY `y`) AS `rown`
      FROM `df`