File: test-verb-pivot-wider.R

package info (click to toggle)
r-cran-dbplyr 2.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 2,376 kB
  • sloc: sh: 13; makefile: 2
file content (482 lines) | stat: -rw-r--r-- 13,388 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
spec <- tibble(
  .name = c("x", "y"),
  .value = "val",
  key = c("x", "y")
)

spec1 <- tibble(.name = "x", .value = "val", key = "x")

test_that("can pivot all cols to wide", {
  expect_equal(
    memdb_frame(key = c("x", "y", "z"), val = 1:3) %>%
      tidyr::pivot_wider(names_from = key, values_from = val) %>%
      collect(),
    tibble(x = 1, y = 2, z = 3)
  )

  spec <- tibble(
    .name = c("x", "y", "z"),
    .value = "val",
    key = c("x", "y", "z")
  )

  expect_snapshot(
    lazy_frame(key = c("x", "y", "z"), val = 1:3) %>%
      dbplyr_pivot_wider_spec(spec)
  )
})

test_that("non-pivoted cols are preserved", {
  df <- lazy_frame(a = 1, key = c("x", "y"), val = 1:2)

  expect_equal(
    dbplyr_pivot_wider_spec(df, spec) %>% op_vars(),
    c("a", "x", "y")
  )
})

test_that("implicit missings turn into explicit missings", {
  df <- memdb_frame(a = 1:2, key = c("x", "y"), val = 1:2)

  expect_equal(
    memdb_frame(a = 1:2, key = c("x", "y"), val = 1:2) %>%
      tidyr::pivot_wider(names_from = key, values_from = val) %>%
      collect(),
    tibble(a = 1:2, x = c(1, NA), y = c(NA, 2))
  )

  expect_snapshot(
    lazy_frame(a = 1:2, key = c("x", "y"), val = 1:2) %>%
      dbplyr_pivot_wider_spec(spec)
  )
})

test_that("error when overwriting existing column", {
  df <- memdb_frame(
    a = c(1, 1),
    key = c("a", "b"),
    val = c(1, 2)
  )
  expect_snapshot(error = TRUE,
    tidyr::pivot_wider(df, names_from = key, values_from = val)
  )
})

test_that("`names_repair` happens after spec column reorganization (#1107)", {
  df <- memdb_frame(
    test = c("a", "b"),
    name = c("test", "test2"),
    value = c(1, 2)
  )

  out <- tidyr::pivot_wider(df, names_repair = ~make.unique(.x)) %>%
    collect()

  expect_identical(out$test, c("a", "b"))
  expect_identical(out$test.1, c(1, NA))
  expect_identical(out$test2, c(NA, 2))
})

test_that("minimal `names_repair` doesn't overwrite a value column that collides with key column (#1107)", {
  skip("`grouped_df()` needs a `name_repair` argument")
  # `collect.tbl_sql()` does not work with duplicated names
  df <- memdb_frame(
    test = c("a", "b"),
    name = c("test", "test2"),
    value = c(1, 2)
  )

  out <- tidyr::pivot_wider(df, names_repair = "minimal") %>%
    collect()

  expect_identical(out[[1]], c("a", "b"))
  expect_identical(out[[2]], c(1, NA))
  expect_identical(out[[3]], c(NA, 2))
})

test_that("grouping is preserved", {
  df <- lazy_frame(a = 1, key = "x", val = 2)

  expect_equal(
    df %>%
      dplyr::group_by(a) %>%
      dbplyr_pivot_wider_spec(spec1) %>%
      group_vars(),
    "a"
  )
})

# https://github.com/tidyverse/tidyr/issues/804
test_that("column with `...j` name can be used as `names_from`", {
  df <- memdb_frame(...8 = c("x", "y", "z"), val = 1:3)
  pv <- tidyr::pivot_wider(df, names_from = ...8, values_from = val) %>% collect()
  expect_named(pv, c("x", "y", "z"))
})


# column names -------------------------------------------------------------

test_that("dbplyr_build_wider_spec can handle multiple columns", {
  df <- memdb_frame(
    x = c("X", "Y"),
    y = 1:2,
    a = 1:2,
    b = 1:2
  )

  expect_equal(
    dbplyr_build_wider_spec(df, x:y, a:b),
    tibble::tribble(
      ~.name, ~.value,  ~x, ~y,
      "a_X_1",     "a", "X", 1L,
      "a_Y_2",     "a", "Y", 2L,
      "b_X_1",     "b", "X", 1L,
      "b_Y_2",     "b", "Y", 2L
    )
  )
})

# keys ---------------------------------------------------------

test_that("can override default keys", {
  df <- tibble::tribble(
    ~row, ~name, ~var, ~value,
    1,    "Sam", "age", 10,
    2,    "Sam", "height", 1.5,
    3,    "Bob", "age", 20,
  )

  df_db <- memdb_frame(!!!df)

  expect_equal(
    df_db %>%
      tidyr::pivot_wider(id_cols = name, names_from = var, values_from = value) %>%
      collect(),
    tibble::tribble(
      ~name, ~age, ~height,
      "Bob",   20,      NA,
      "Sam",   10,     1.5
    )
  )
})

test_that("`id_cols = everything()` excludes `names_from` and `values_from`", {
  df <- memdb_frame(key = "x", name = "a", value = 1L)

  expect_identical(
    tidyr::pivot_wider(df, id_cols = everything()) %>% collect(),
    tibble(key = "x", a = 1L)
  )

  spec <- dbplyr_build_wider_spec(df)

  expect_identical(
    dbplyr_pivot_wider_spec(df, spec, id_cols = everything()) %>% collect(),
    tibble(key = "x", a = 1L)
  )
})

test_that("pivoting a zero row data frame drops `names_from` and `values_from` (#1249)", {
  df <- memdb_frame(key = character(), name = character(), value = integer())

  expect_identical(
    tidyr::pivot_wider(df, names_from = name, values_from = value) %>% collect(),
    tibble(key = character())
  )
})

test_that("known bug - building a wider spec with a zero row data frame loses `values_from` info (#1249)", {
  # We can't currently change this behavior in `pivot_wider_spec()`,
  # for fear of breaking backwards compatibility

  df <- memdb_frame(key = character(), name = character(), value = integer())

  # Building the spec loses the fact that `value` was specified as `values_from`,
  # which would normally be in the `spec$.value` column
  spec <- dbplyr_build_wider_spec(df, names_from = name, values_from = value)

  # So pivoting with this spec accidentally keeps `value` around
  expect_identical(
    dbplyr_pivot_wider_spec(df, spec) %>% collect(),
    tibble(key = character(), value = integer())
  )

  # If you specify `id_cols` to be the `key` column, it works right
  expect_identical(
    dbplyr_pivot_wider_spec(df, spec, id_cols = key) %>% collect(),
    tibble(key = character())
  )

  # But `id_cols = everything()` won't work as intended, because we can't know
  # to remove `value` from `names(data)` before computing the tidy-selection
  expect_identical(
    dbplyr_pivot_wider_spec(df, spec, id_cols = everything()) %>% collect(),
    tibble(key = character(), value = integer())
  )
})

# non-unqiue keys ---------------------------------------------------------

test_that("values_fn can be a single function", {
  df <- lazy_frame(a = c(1, 1, 2), key = c("x", "x", "x"), val = c(1, 10, 100))

  expect_snapshot(
    suppressWarnings(dbplyr_pivot_wider_spec(df, spec1, values_fn = sum))
  )
})

test_that("values_fn can be a formula", {
  df <- lazy_frame(a = c(1, 1, 2), key = c("x", "x", "x"), val = c(1, 10, 100))

  expect_snapshot(dbplyr_pivot_wider_spec(df, spec1, values_fn = ~ sum(.x, na.rm = TRUE)))
})

test_that("values_fn can be a named list", {
  df <- lazy_frame(
    key = c("x", "x"),
    a = c(1, 2),
    b = c(3, 4)
  )

  spec <- tibble(
    .name = c("a_x", "b_x"),
    .value = c("a", "b"),
    key = "x"
  )

  dbplyr_pivot_wider_spec(
    df, spec,
    values_fn = list(a = sum, b = ~ sum(.x, na.rm = TRUE))
  )

  # must specify `values_fn` for every column
  expect_snapshot_error(
    dbplyr_pivot_wider_spec(df, spec, values_fn = list(a = sum))
  )
  # no function must be `NULL`
  expect_snapshot_error(
    dbplyr_pivot_wider_spec(df, spec, values_fn = list(a = sum, b = NULL))
  )
})

test_that("values_fn cannot be NULL", {
  df <- lazy_frame(a = 1, key = "x", val = 1)

  expect_snapshot(error = TRUE, dbplyr_pivot_wider_spec(df, spec1, values_fn = NULL))
})


# unused -------------------------------------------------------------------

test_that("`unused_fn` can summarize unused columns (#990)", {
  df <- memdb_frame(
    id = c(1, 1, 2, 2),
    unused1 = c(1, 2, 4, 3),
    unused2 = c(11, 12, 14, 13),
    name = c("a", "b", "a", "b"),
    value = c(1, 2, 3, 4)
  )

  # By name
  suppressWarnings(
    res <- tidyr::pivot_wider(df, id_cols = id, unused_fn = list(unused1 = max)) %>%
      collect()
  )
  expect_named(res, c("id", "a", "b", "unused1"))
  expect_identical(res$unused1, c(2, 4))

  # Globally
  suppressWarnings(
    res <- tidyr::pivot_wider(df, id_cols = id, unused_fn = min) %>%
      collect()
  )
  expect_named(res, c("id", "a", "b", "unused1", "unused2"))
  expect_identical(res$unused1, c(1, 3))
  expect_identical(res$unused2, c(11, 13))
})

test_that("`unused_fn` works with anonymous functions", {
  df <- memdb_frame(
    id = c(1, 1, 2, 2),
    unused = c(1, NA, 4, 3),
    name = c("a", "b", "a", "b"),
    value = c(1, 2, 3, 4)
  )

  res <- tidyr::pivot_wider(df, id_cols = id, unused_fn = ~mean(.x, na.rm = TRUE)) %>%
    collect()
  expect_identical(res$unused, c(1, 3.5))
})

test_that("`unused_fn` is validated", {
  df <- memdb_frame(id = 1, unused = 1, name = "a", value = 1)

  expect_snapshot(
    (expect_error(tidyr::pivot_wider(df, id_cols = id, unused_fn = 1)))
  )
})

# can fill missing cells --------------------------------------------------

test_that("can fill in missing cells", {
  spec <- tibble(
    .name = c("x", "y"),
    .value = "value",
    name = c("x", "y")
  )
  df <- memdb_frame(g = c(1, 2), name = c("x", "y"), value = c(1, 2))
  df_lazy <- lazy_frame(g = c(1, 2), name = c("x", "y"), value = c(1, 2))

  expect_equal(tidyr::pivot_wider(df) %>% pull(x), c(1, NA))

  expect_equal(tidyr::pivot_wider(df, values_fill = 0) %>% pull(x), c(1, 0))
  expect_snapshot(dbplyr_pivot_wider_spec(df_lazy, spec, values_fill = 0))

  expect_equal(
    tidyr::pivot_wider(df, values_fill = list(value = 0)) %>%
      pull(x),
    c(1, 0)
  )
  expect_snapshot(
    dbplyr_pivot_wider_spec(
      df_lazy,
      spec,
      values_fill = list(value = 0)
    )
  )
})

test_that("values_fill only affects missing cells", {
  df <- memdb_frame(g = c(1, 2), name = c("x", "y"), value = c(1, NA))
  dbplyr_build_wider_spec(df)
  out <- tidyr::pivot_wider(df, values_fill = 0) %>%
    collect()
  expect_equal(out$y, c(0, NA))
})

test_that("values_fill is checked", {
  lf <- lazy_frame(g = c(1, 2), name = c("x", "y"), value = c(1, NA))
  spec <- tibble(
    .name = c("x", "y"),
    .value = "value",
    name = .name
  )
  expect_snapshot(
    error = TRUE,
    dbplyr_pivot_wider_spec(lf, spec, values_fill = 1:2)
  )
})

# multiple values ----------------------------------------------------------

test_that("can pivot from multiple measure cols", {
  df <- memdb_frame(row = 1, var = c("x", "y"), a = 1:2, b = 3:4)
  pv <- tidyr::pivot_wider(df, names_from = var, values_from = c(a, b)) %>%
    collect()

  expect_named(pv, c("row", "a_x", "a_y", "b_x", "b_y"))
  expect_equal(pv$a_x, 1)
  expect_equal(pv$b_y, 4)
})

test_that("column order in output matches spec", {
  df <- tibble::tribble(
    ~hw,   ~name,  ~mark,   ~pr,
    "hw1", "anna",    95,  "ok",
    "hw2", "anna",    70, "meh",
  )

  # deliberately create weird order
  sp <- tibble::tribble(
    ~hw, ~.value,  ~.name,
    "hw1", "mark", "hw1_mark",
    "hw1", "pr",   "hw1_pr",
    "hw2", "pr",   "hw2_pr",
    "hw2", "mark", "hw2_mark",
  )

  pv <- dbplyr_pivot_wider_spec(lazy_frame(!!!df), sp)
  expect_equal(pv %>% op_vars(), c("name", sp$.name))
})

test_that("cannot pivot lazy frames", {
  expect_snapshot(error = TRUE, tidyr::pivot_wider(lazy_frame(name = "x", value = 1)))
})

# multiple names ----------------------------------------------------------

test_that("can pivot multiple from multiple names", {
  x <- tibble(
    seq = c(1, 1, 2, 2),
    name = rep(c("id", "name"), 2),
    value = c("01", "curie", "02", "arrhenius")
  )

  expect_equal(
    memdb_frame(x) %>%
      tidyr::pivot_wider(
        names_from = c(name, seq),
        values_from = value
      ) %>%
      collect(),
    tibble(id_1 = "01", name_1 = "curie", id_2 = "02", name_2 = "arrhenius")
  )
})


# pass through arguments --------------------------------------------------

test_that("can vary `names_from` values slowest (#839)", {
  df <- memdb_frame(
    name = c("name1", "name2"),
    value1 = c(1, 2),
    value2 = c(4, 5)
  )

  spec <- dbplyr_build_wider_spec(df, names_from = name, values_from = c(value1, value2))

  expect_identical(
    spec$.name,
    c("value1_name1", "value1_name2", "value2_name1", "value2_name2")
  )

  spec <- dbplyr_build_wider_spec(df, names_from = name, values_from = c(value1, value2), names_vary = "slowest")

  expect_identical(
    spec$.name,
    c("value1_name1", "value2_name1", "value1_name2", "value2_name2")
  )
})

test_that("`names_expand` does a cartesian expansion of `names_from` columns (#770)", {
  df <- memdb_frame(name1 = c("a", "b"), name2 = c("c", "d"), value = c(1, 2))
  spec <- dbplyr_build_wider_spec(df, names_from = c(name1, name2), names_expand = TRUE)
  expect_identical(spec$.name, c("a_c", "a_d", "b_c", "b_d"))
})


# checks arguments --------------------------------------------------------

test_that("`names_from` must be supplied if `name` isn't in `data` (#1240)", {
  df <- memdb_frame(key = "x", val = 1)
  expect_snapshot((expect_error(tidyr::pivot_wider(df, values_from = val))))
})

test_that("`values_from` must be supplied if `value` isn't in `data` (#1240)", {
  df <- memdb_frame(key = "x", val = 1)
  expect_snapshot((expect_error(tidyr::pivot_wider(df, names_from = key))))
})

test_that("`names_from` must identify at least 1 column (#1240)", {
  df <- memdb_frame(key = "x", val = 1)
  expect_snapshot(
    (expect_error(tidyr::pivot_wider(df, names_from = starts_with("foo"), values_from = val)))
  )
})

test_that("`values_from` must identify at least 1 column (#1240)", {
  df <- memdb_frame(key = "x", val = 1)
  expect_snapshot(
    (expect_error(tidyr::pivot_wider(df, names_from = key, values_from = starts_with("foo"))))
  )
})