1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
#' Backend: Databricks Spark SQL
#'
#' @description
#' See `vignette("translation-function")` and `vignette("translation-verb")` for
#' details of overall translation technology. Key differences for this backend
#' are better translation of statistical aggregate functions
#' (e.g. `var()`, `median()`) and use of temporary views instead of temporary
#' tables when copying data.
#'
#' Use `simulate_spark_sql()` with `lazy_frame()` to see simulated SQL without
#' converting to live access database.
#'
#' @name backend-spark-sql
#' @aliases NULL
#' @examples
#' library(dplyr, warn.conflicts = FALSE)
#'
#' lf <- lazy_frame(a = TRUE, b = 1, d = 2, c = "z", con = simulate_spark_sql())
#'
#' lf %>% summarise(x = median(d, na.rm = TRUE))
#' lf %>% summarise(x = var(c, na.rm = TRUE), .by = d)
#'
#' lf %>% mutate(x = first(c))
#' lf %>% mutate(x = first(c), .by = d)
NULL
#' @export
#' @rdname backend-spark-sql
simulate_spark_sql <- function() simulate_dbi("Spark SQL")
#' @export
`dbplyr_edition.Spark SQL` <- function(con) {
2L
}
#' @export
`sql_translation.Spark SQL` <- function(con) {
sql_variant(
sql_translator(.parent = base_odbc_scalar,
# clock ---------------------------------------------------------------
add_days = function(x, n, ...) {
check_dots_empty()
sql_expr(date_add(!!x, !!n))
},
add_years = function(x, n, ...) {
check_dots_empty()
sql_expr(add_months(!!!x, !!n*12))
},
date_build = function(year, month = 1L, day = 1L, ..., invalid = NULL) {
sql_expr(make_date(!!year, !!month, !!day))
},
get_year = function(x) {
sql_expr(date_part('YEAR', !!x))
},
get_month = function(x) {
sql_expr(date_part('MONTH', !!x))
},
get_day = function(x) {
sql_expr(date_part('DAY', !!x))
},
difftime = function(time1, time2, tz, units = "days") {
if (!missing(tz)) {
cli::cli_abort("The {.arg tz} argument is not supported for SQL backends.")
}
if (units[1] != "days") {
cli::cli_abort('The only supported value for {.arg units} on SQL backends is "days"')
}
sql_expr(datediff(!!time2, !!time1))
}
),
sql_translator(.parent = base_odbc_agg,
var = sql_aggregate("VARIANCE", "var"),
quantile = sql_quantile("PERCENTILE"),
median = sql_aggregate("MEDIAN"),
first = function(x, na_rm = FALSE) {
check_na_rm(na_rm)
glue_sql2(sql_current_con(), "FIRST({.val x})")
},
last = function(x, na_rm = FALSE) {
check_na_rm(na_rm)
glue_sql2(sql_current_con(), "LAST({.val x})")
},
),
sql_translator(.parent = base_odbc_win,
var = win_aggregate("VARIANCE"),
quantile = sql_quantile("PERCENTILE", window = TRUE),
median = win_aggregate("MEDIAN"),
first = function(x, order_by = NULL, na_rm = FALSE) {
sql_nth(x, 1L, order_by = order_by, na_rm = na_rm, ignore_nulls = "bool")
},
last = function(x, order_by = NULL, na_rm = FALSE) {
sql_nth(x, Inf, order_by = order_by, na_rm = na_rm, ignore_nulls = "bool")
},
nth = function(x, n, order_by = NULL, na_rm = FALSE) {
sql_nth(x, n, order_by = order_by, na_rm = na_rm, ignore_nulls = "bool")
},
)
)
}
#' @export
`sql_table_analyze.Spark SQL` <- function(con, table, ...) {
# https://docs.databricks.com/en/sql/language-manual/sql-ref-syntax-aux-analyze-table.html
glue_sql2(con, "ANALYZE TABLE {.tbl table} COMPUTE STATISTICS")
}
#' @export
`supports_window_clause.Spark SQL` <- function(con) {
TRUE
}
#' @export
`db_copy_to.Spark SQL` <- function(con,
table,
values,
...,
overwrite = FALSE,
types = NULL,
temporary = TRUE,
unique_indexes = NULL,
indexes = NULL,
analyze = TRUE,
in_transaction = FALSE) {
if (temporary) {
sql <- sql_values_subquery(con, values, types = types, lvl = 1)
db_compute(con, table, sql, overwrite = overwrite)
} else {
NextMethod()
}
}
#' @export
`db_compute.Spark SQL` <- function(con,
table,
sql,
...,
overwrite = FALSE,
temporary = TRUE,
unique_indexes = list(),
indexes = list(),
analyze = TRUE,
in_transaction = FALSE) {
if (!temporary) {
cli::cli_abort("Spark SQL only support temporary tables")
}
sql <- glue_sql2(
con,
"CREATE ", if (overwrite) "OR REPLACE ",
"TEMPORARY VIEW {.tbl {table}} AS \n",
"{.from {sql}}"
)
DBI::dbExecute(con, sql)
table
}
utils::globalVariables(c("regexp_replace", "date_add", "add_months", "datediff"))
|