File: verb-distinct.R

package info (click to toggle)
r-cran-dbplyr 2.5.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 2,644 kB
  • sloc: sh: 13; makefile: 2
file content (176 lines) | stat: -rw-r--r-- 4,868 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#' Subset distinct/unique rows
#'
#' This is a method for the dplyr [distinct()] generic. It adds the
#' `DISTINCT` clause to the SQL query.
#'
#' @inheritParams arrange.tbl_lazy
#' @inheritParams dplyr::distinct
#' @inherit arrange.tbl_lazy return
#' @export
#' @importFrom dplyr distinct
#' @examples
#' library(dplyr, warn.conflicts = FALSE)
#'
#' db <- memdb_frame(x = c(1, 1, 2, 2), y = c(1, 2, 1, 1))
#' db %>% distinct() %>% show_query()
#' db %>% distinct(x) %>% show_query()
distinct.tbl_lazy <- function(.data, ..., .keep_all = FALSE) {
  grps <- syms(op_grps(.data))
  empty_dots <- dots_n(...) == 0
  can_use_distinct <- !.keep_all || (empty_dots && is_empty(grps))
  if (!can_use_distinct) {
    needs_dummy_order <- is.null(op_sort(.data))

    if (needs_dummy_order) {
      dummy_order_vars <- colnames(.data)[[1]]
      .data <- .data %>% window_order(!!sym(dummy_order_vars))
    }

    .data <- .data %>%
      group_by(..., .add = TRUE) %>%
      filter(row_number() == 1L) %>%
      group_by(!!!grps)

    if (needs_dummy_order) {
      .data <- .data %>% window_order()
    }

    return(.data)
  }

  if (empty_dots) {
    dots <- quos(!!!syms(colnames(.data)))
  } else {
    dots <- partial_eval_dots(.data, ..., .named = FALSE)
    dots <- quos(!!!dots)
  }
  prep <- distinct_prepare_compat(.data, dots, group_vars = group_vars(.data))
  out <- dplyr::select(prep$data, prep$keep)

  out$lazy_query <- add_distinct(out)
  out
}

# copied from dplyr with minor changes (names -> colnames)
# https://github.com/tidyverse/dplyr/blob/main/R/distinct.R
distinct_prepare_compat <- function(.data,
                             vars,
                             group_vars = character(),
                             .keep_all = FALSE,
                             caller_env = caller_env(2),
                             error_call = caller_env()
                             ) {
  stopifnot(is_quosures(vars), is.character(group_vars))

  # If no input, keep all variables
  if (length(vars) == 0) {
    return(list(
      data = .data,
      vars = seq_along(.data),
      keep = seq_along(.data)
    ))
  }

  # If any calls, use mutate to add new columns, then distinct on those
  computed_columns <- add_computed_columns(.data, vars, error_call = error_call)
  .data <- computed_columns$data
  distinct_vars <- computed_columns$added_names

  # Once we've done the mutate, we no longer need lazy objects, and
  # can instead just use their names
  missing_vars <- setdiff(distinct_vars, colnames(.data))
  if (length(missing_vars) > 0) {
    bullets <- c(
      "Must use existing variables.",
      set_names(glue("`{missing_vars}` not found in `.data`."), rep("x", length(missing_vars)))
    )
    abort(bullets, call = error_call)
  }

  # Only keep unique vars
  distinct_vars <- unique(distinct_vars)
  # Missing grouping variables are added to the front
  new_vars <- c(setdiff(group_vars, distinct_vars), distinct_vars)

  if (.keep_all) {
    keep <- seq_along(.data)
  } else {
    keep <- new_vars
  }

  list(data = .data, vars = new_vars, keep = keep)
}

# copied from dplyr
# https://github.com/tidyverse/dplyr/blob/main/R/group-by.R#L243
add_computed_columns <- function(.data,
                                 vars,
                                 error_call = caller_env()) {
  is_symbol <- purrr::map_lgl(vars, quo_is_variable_reference)
  needs_mutate <- have_name(vars) | !is_symbol

  if (any(needs_mutate)) {
    out <- mutate(.data, !!!vars)
    col_names <- names(exprs_auto_name(vars))
  } else {
    out <- .data
    col_names <- names(exprs_auto_name(vars))
  }

  list(data = out, added_names = col_names)
}

# copied from dplyr
# https://github.com/tidyverse/dplyr/blob/main/R/group-by.R#L276
quo_is_variable_reference <- function(quo) {
  if (quo_is_symbol(quo)) {
    return(TRUE)
  }

  if (quo_is_call(quo, n = 2)) {
    expr <- quo_get_expr(quo)

    if (is_call(expr, c("$", "[["))) {
      if (!identical(expr[[2]], sym(".data"))) {
        return(FALSE)
      }

      param <- expr[[3]]
      if (is_symbol(param) || is_string(param)) {
        return(TRUE)
      }
    }
  }

  FALSE
}


add_distinct <- function(.data) {
  lazy_query <- .data$lazy_query

  out <- lazy_select_query(
    x = lazy_query,
    distinct = TRUE
  )
  # TODO this could also work for joins
  if (!is_lazy_select_query(lazy_query)) {
    return(out)
  }

  # Optimisation overview
  # * `distinct()` adds the `DISTINCT` clause to `SELECT`
  # * `WHERE`, `GROUP BY`, and `HAVING` are executed before `SELECT`
  #   => they do not matter
  # * `ORDER BY`
  #   => but `arrange()` should not have an influence on `distinct()` so it
  #      should not matter
  # * `LIMIT` are executed after `SELECT`
  #   => needs a subquery
  if (!is_null(lazy_query$limit)) {
    return(out)
  }

  lazy_query$distinct <- TRUE
  lazy_query
}