1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
#' Create, modify, and delete columns
#'
#' These are methods for the dplyr [mutate()] and [transmute()] generics.
#' They are translated to computed expressions in the `SELECT` clause of
#' the SQL query.
#'
#' @inheritParams arrange.tbl_lazy
#' @inheritParams dplyr::mutate
#' @inherit arrange.tbl_lazy return
#' @export
#' @importFrom dplyr mutate
#' @examples
#' library(dplyr, warn.conflicts = FALSE)
#'
#' db <- memdb_frame(x = 1:5, y = 5:1)
#' db %>%
#' mutate(a = (x + y) / 2, b = sqrt(x^2L + y^2L)) %>%
#' show_query()
#'
#' # dbplyr automatically creates subqueries as needed
#' db %>%
#' mutate(x1 = x + 1, x2 = x1 * 2) %>%
#' show_query()
mutate.tbl_lazy <- function(.data,
...,
.by = NULL,
.keep = c("all", "used", "unused", "none"),
.before = NULL,
.after = NULL) {
keep <- arg_match(.keep)
by <- compute_by({{ .by }}, .data, by_arg = ".by", data_arg = ".data")
if (by$from_by) {
.data$lazy_query$group_vars <- by$names
}
layer_info <- get_mutate_layers(.data, ...)
used <- layer_info$used_vars
layers <- layer_info$layers
# The layers may contain `var = quo(NULL)` at this point.
# They are removed in `add_mutate()`.
out <- .data
for (layer in layers) {
out$lazy_query <- add_mutate(out$lazy_query, layer)
}
if (by$from_by) {
out$lazy_query$group_vars <- character()
}
names_original <- colnames(.data)
out <- mutate_relocate(
out = out,
before = {{ .before }},
after = {{ .after }},
names_original = names_original
)
names_new <- layer_info$modified_vars
names_groups <- by$names
out <- mutate_keep(
out = out,
keep = keep,
used = used,
names_new = names_new,
names_groups = names_groups
)
out
}
#' @export
#' @importFrom dplyr transmute
transmute.tbl_lazy <- function(.data, ...) {
layer_info <- get_mutate_layers(.data, ...)
for (layer in layer_info$layers) {
.data$lazy_query <- add_mutate(.data$lazy_query, layer)
}
# Retain expression columns in order of their appearance
cols_expr <- layer_info$modified_vars
# Retain untouched group variables up front
cols_group <- group_vars(.data)
cols_group <- setdiff(cols_group, cols_expr)
cols_retain <- c(cols_group, cols_expr)
select(.data, all_of(cols_retain))
}
# helpers -----------------------------------------------------------------
add_mutate <- function(lazy_query, vars) {
# drop NULLs
vars <- purrr::discard(vars, ~ (is_quosure(.x) && quo_is_null(.x)) || is.null(.x))
if (is_projection(vars)) {
sel_vars <- purrr::map_chr(vars, as_string)
out <- add_select(lazy_query, sel_vars)
return(out)
}
if (is_lazy_select_query(lazy_query)) {
# Special optimisation when applied to pure projection() - this is
# conservative and we could expand to any op_select() if combined with
# the logic in get_mutate_layers()
select <- lazy_query$select
is_select_op <- lazy_query$select_operation %in% c("select", "mutate")
if (is_pure_projection(select$expr, select$name) && is_select_op && !is_true(lazy_query$distinct)) {
lazy_query$select <- new_lazy_select(
vars,
group_vars = op_grps(lazy_query),
order_vars = op_sort(lazy_query),
frame = op_frame(lazy_query)
)
return(lazy_query)
}
}
lazy_select_query(
x = lazy_query,
select_operation = "mutate",
select = vars
)
}
# Split mutate expressions in independent layers, e.g.
#
# `get_mutate_layers(lf, b = a + 1, c = a - 1, d = b + 1)`
#
# creates two layers:
# 1) a = a, b = a + 1, c = a - 1
# because `b` and `c` are independent of each other they can be on the
# same layer
# 2) a = a, b = b, c = c, d = b + 1
# because `d` depends on `b` it must be on a new layer
get_mutate_layers <- function(.data, ..., error_call = caller_env()) {
dots <- as.list(enquos(..., .named = TRUE))
dot_names <- names2(exprs(...))
was_named <- have_name(exprs(...))
layer_modified_vars <- character()
all_modified_vars <- character()
used_vars <- character()
all_vars <- op_vars(.data)
# Each dot may contain an `across()` expression which can refer to freshly
# created variables. So, it is necessary to keep track of the current data
# to partially evaluate the dot.
cur_data <- .data
cur_layer <- syms(set_names(all_vars))
layers <- list()
for (i in seq_along(dots)) {
dot <- dots[[i]]
dot_name <- dot_names[[i]]
quosures <- partial_eval_quo(dot, cur_data, error_call, dot_name, was_named[[i]])
if (!is.list(quosures)) {
quosures <- set_names(list(quosures), names(dots)[[i]])
}
quosures <- unclass(quosures)
cols_result <- get_mutate_dot_cols(quosures, all_vars)
if (any(cols_result$used_vars %in% layer_modified_vars)) {
layers <- append(layers, list(cur_layer))
cur_layer <- syms(set_names(names(cur_layer)))
layer_modified_vars <- character()
}
used_vars <- c(used_vars, cols_result$used_vars)
layer_modified_vars <- c(layer_modified_vars, cols_result$modified_vars)
all_modified_vars <- c(all_modified_vars, cols_result$modified_vars)
cur_layer <- purrr::list_assign(cur_layer, !!!cols_result$cols)
all_vars <- c(all_vars, setdiff(cols_result$modified_vars, all_vars))
cols <- set_names(syms(names(cur_layer)))
cols <- purrr::list_assign(cur_layer, !!!cols_result$cols)
cur_data$lazy_query <- add_mutate(cur_data$lazy_query, cols)
removed_cols <- cols_result$removed_cols
cur_data$lazy_query <- add_select(
cur_data$lazy_query,
set_names(setdiff(all_vars, removed_cols))
)
}
list(
layers = append(layers, list(cur_layer)),
modified_vars = all_modified_vars,
used_vars = set_names(all_vars %in% used_vars, all_vars)
)
}
get_mutate_dot_cols <- function(quosures, all_vars) {
cols <- list()
modified_vars <- character()
used_vars <- character()
var_is_null <- logical()
for (k in seq_along(quosures)) {
cur_quo <- quosures[[k]]
cur_var <- names(quosures)[[k]]
if (quo_is_null(cur_quo)) {
var_is_null[[cur_var]] <- TRUE
cols[[cur_var]] <- cur_quo
modified_vars <- setdiff(modified_vars, cur_var)
next
}
var_is_null[[cur_var]] <- FALSE
if (quo_is_symbol(cur_quo)) {
cur_sym <- quo_get_expr(cur_quo)
if (as_name(cur_sym) %in% all_vars) {
cur_quo <- cur_sym
}
}
cols[[cur_var]] <- cur_quo
used_vars <- c(used_vars, all_names(cur_quo))
modified_vars <- c(modified_vars, cur_var)
}
list(
cols = cols,
used_vars = used_vars,
modified_vars = modified_vars,
removed_cols = names2(var_is_null)[var_is_null]
)
}
mutate_relocate <- function(out, before, after, names_original) {
before <- enquo(before)
after <- enquo(after)
if (quo_is_null(before) && quo_is_null(after)) {
return(out)
}
# Only change the order of completely new columns that
# didn't exist in the original data
names <- colnames(out)
names <- setdiff(names, names_original)
relocate(
out,
all_of(names),
.before = !!before,
.after = !!after
)
}
mutate_keep <- function(out, keep, used, names_new, names_groups) {
names <- colnames(out)
if (keep == "all") {
names_out <- names
} else {
names_keep <- switch(
keep,
used = names(used)[used],
unused = names(used)[!used],
none = character(),
abort("Unknown `keep`.", .internal = TRUE)
)
names_out <- intersect(names, c(names_new, names_groups, names_keep))
}
select(out, all_of(names_out))
}
|