File: dbscan.bib

package info (click to toggle)
r-cran-dbscan 1.1-11%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,964 kB
  • sloc: cpp: 4,314; sh: 13; makefile: 5
file content (916 lines) | stat: -rw-r--r-- 31,528 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
@Article{hahsler2019dbscan,
    title = {{dbscan}: Fast Density-Based Clustering with {R}},
    author = {Michael Hahsler and Matthew Piekenbrock and Derek Doran},
    journal = {Journal of Statistical Software},
    year = {2019},
    volume = {91},
    number = {1},
    pages = {1--30},
    doi = {10.18637/jss.v091.i01},
  }


@inproceedings{ester1996density,
  title={A density-based algorithm for discovering clusters in large spatial databases with noise.},
  author={Ester, Martin and Kriegel, Hans-Peter and Sander, J{\"o}rg and Xu, Xiaowei and others},
  booktitle={Kdd},
  volume={96},
  number={34},
  pages={226--231},
  year={1996}
}

@Manual{dbscan-R,
  title = {dbscan: Density Based Clustering of Applications with Noise (DBSCAN) and Related Algorithms},
  author = {Michael Hahsler and Matthew Piekenbrock},
  note = {R package version 0.9-8.2},
  year={2016}
}
%% Original OPTICS paper
%% -----------------------------------------------------------------------------
@inproceedings{ankerst1999optics,
  title={OPTICS: ordering points to identify the clustering structure},
  author={Ankerst, Mihael and Breunig, Markus M and Kriegel, Hans-Peter and Sander, J{\"o}rg},
  booktitle={ACM Sigmod Record},
  volume={28},
  number={2},
  pages={49--60},
  year={1999},
  organization={ACM}
}

% OPTICS cluster extraction improvements
% -----------------------------------------------------------------------------
@inproceedings{DBLP:conf/lwa/SchubertG18,
  author    = {Erich Schubert and
               Michael Gertz},
  title     = {Improving the Cluster Structure Extracted from {OPTICS} Plots},
  booktitle = {Lernen, Wissen, Daten, Analysen (LWDA 2018)},
  series    = {{CEUR} Workshop Proceedings},
  volume    = {2191},
  pages     = {318--329},
  publisher = {CEUR-WS.org},
  year      = {2018}
}

% Original LOF paper
% -----------------------------------------------------------------------------
@inproceedings{breunig2000lof,
 title={LOF: identifying density-based local outliers},
 author={Breunig, Markus M and Kriegel, Hans-Peter and Ng, Raymond T and Sander, J{\"o}rg},
 booktitle={ACM sigmod record},
 volume={29},
 number={2},
 pages={93--104},
 year={2000},
 organization={ACM}
}

% 2003 Reachability <--> Dendrograms Conversions Paper
% -----------------------------------------------------------------------------
@inproceedings{sander2003automatic,
 title={Automatic extraction of clusters from hierarchical clustering representations},
 author={Sander, J{\"o}rg and Qin, Xuejie and Lu, Zhiyong and Niu, Nan and Kovarsky, Alex},
 booktitle={Pacific-Asia Conference on Knowledge Discovery and Data Mining},
 pages={75--87},
 year={2003},
 organization={Springer}
}

% Original BIRCH paper
% -----------------------------------------------------------------------------
@inproceedings{zhang96,
 title={BIRCH: an efficient data clustering method for very large databases},
 author={Zhang, Tian and Ramakrishnan, Raghu and Livny, Miron},
 booktitle={ACM Sigmod Record},
 volume={25},
 number={2},
 pages={103--114},
 year={1996},
 organization={ACM}
}

% GDBSCAN Paper (Generalized DBSCAN, by Sanders)
% -----------------------------------------------------------------------------
@article{sander1998density,
 title={Density-based clustering in spatial databases: The algorithm gdbscan and its applications},
 author={Sander, J{\"o}rg and Ester, Martin and Kriegel, Hans-Peter and Xu, Xiaowei},
 journal={Data mining and knowledge discovery},
 volume={2},
 number={2},
 pages={169--194},
 year={1998},
 publisher={Springer}
}

% HDBSCAN* Newest Paper
% -----------------------------------------------------------------------------
@article{campello2015hierarchical,
 title={Hierarchical density estimates for data clustering, visualization, and outlier detection},
 author={Campello, Ricardo JGB and Moulavi, Davoud and Zimek, Arthur and Sander, Joerg},
 journal={ACM Transactions on Knowledge Discovery from Data (TKDD)},
 volume={10},
 number={1},
 pages={5},
 year={2015},
 publisher={ACM}
}

% First HDBSCAN* introduction paper, later revised in 2015. The newer one is better.
% -----------------------------------------------------------------------------
@inproceedings{campello2013density,
 title={Density-based clustering based on hierarchical density estimates},
 author={Campello, Ricardo JGB and Moulavi, Davoud and Sander, J{\"o}rg},
 booktitle={Pacific-Asia Conference on Knowledge Discovery and Data Mining},
 pages={160--172},
 year={2013},
 organization={Springer}
}

% The new-ish 'Standard Methodology' paper of that 'tackles the methodological  drawbacks' % of internal clustering validation
% -----------------------------------------------------------------------------
@article{gurrutxaga2011towards,
 title={Towards a standard methodology to evaluate internal cluster validity indices},
 author={Gurrutxaga, Ibai and Muguerza, Javier and Arbelaitz, Olatz and P{\'e}rez, Jes{\'u}s M and Mart{\'\i}n, Jos{\'e} I},
 journal={Pattern Recognition Letters},
 volume={32},
 number={3},
 pages={505--515},
 year={2011},
 publisher={Elsevier}
}

% Original ABACUS - Workaround implementation of mixture modeling for finding
% arbitrary shapes
% -----------------------------------------------------------------------------
@article{gegick2011abacus,
 title={ABACUS: mining arbitrary shaped clusters from large datasets based on backbone identification},
 author={Gegick, M},
 year={2011},
 publisher={SIAM}
}


% Original Silhouette Index Paper
% -----------------------------------------------------------------------------
@article{rousseeuw1987silhouettes,
 title={Silhouettes: a graphical aid to the interpretation and validation of cluster analysis},
 author={Rousseeuw, Peter J},
 journal={Journal of computational and applied mathematics},
 volume={20},
 pages={53--65},
 year={1987},
 publisher={Elsevier}
}

% Extensive Comparative Study of IVMS
% -----------------------------------------------------------------------------
@article{arbelaitz2013extensive,
 title={An extensive comparative study of cluster validity indices},
 author={Arbelaitz, Olatz and Gurrutxaga, Ibai and Muguerza, Javier and P{\'e}rez, Jes{\'u}S M and Perona, I{\~n}Igo},
 journal={Pattern Recognition},
 volume={46},
 number={1},
 pages={243--256},
 year={2013},
 publisher={Elsevier}
}

% Graph Theory measures for Internal Cluster Validation
% -----------------------------------------------------------------------------
@article{pal1997cluster,
 title={Cluster validation using graph theoretic concepts},
 author={Pal, Nikhil R and Biswas, J},
 journal={Pattern Recognition},
 volume={30},
 number={6},
 pages={847--857},
 year={1997},
 publisher={Elsevier}
}

% Rankings of research papers by citation count; used for showing DBSCAN
% popularity
% -----------------------------------------------------------------------------
@misc{acade96:online,
author = {{Microsoft Academic Search}},
title = {Top publications in data mining},
howpublished = {\url{http://academic.research.microsoft.com/RankList?entitytype=1&topDomainID=2&subDomainID=7&last=0&start=1&end=100}},
month = {},
year = {2016},
note = {(Accessed on 08/29/2016)}
}


@misc{PyCluste54:online,
author = {Novikov, Andrei},
title = {PyClustering: PyClustering library},
howpublished = {\url{http://pythonhosted.org/pyclustering/}},
year = {2016},
note = {v.0.6.6}
}


% Hartigans convex density estimation model
% -----------------------------------------------------------------------------
@article{hartigan1987estimation,
 title={Estimation of a convex density contour in two dimensions},
 author={Hartigan, JA},
 journal={Journal of the American Statistical Association},
 volume={82},
 number={397},
 pages={267--270},
 year={1987},
 publisher={Taylor \& Francis}
}

% Bentleys Original KDTree Paper
% -----------------------------------------------------------------------------
@article{bentley1975multidimensional,
 title={Multidimensional binary search trees used for associative searching},
 author={Bentley, Jon Louis},
 journal={Communications of the ACM},
 volume={18},
 number={9},
 pages={509--517},
 year={1975},
 publisher={ACM}
}

% Original CLARANS paper
% -----------------------------------------------------------------------------
@article{ng2002clarans,
 title={CLARANS: A method for clustering objects for spatial data mining},
 author={Ng, Raymond T. and Han, Jiawei},
 journal={IEEE transactions on knowledge and data engineering},
 volume={14},
 number={5},
 pages={1003--1016},
 year={2002},
 publisher={IEEE}
}

% Original DENCLUE paper
% -----------------------------------------------------------------------------
@inproceedings{hinneburg1998efficient,
 title={An efficient approach to clustering in large multimedia databases with noise},
 author={Hinneburg, Alexander and Keim, Daniel A},
 booktitle={KDD},
 volume={98},
 pages={58--65},
 year={1998}
}

% Original Chameleon Paper
% -----------------------------------------------------------------------------
@article{karypis1999chameleon,
 title={Chameleon: Hierarchical clustering using dynamic modeling},
 author={Karypis, George and Han, Eui-Hong and Kumar, Vipin},
 journal={Computer},
 volume={32},
 number={8},
 pages={68--75},
 year={1999},
 publisher={IEEE}
}

% Original CURE algorithm
% -----------------------------------------------------------------------------
@inproceedings{guha1998cure,
 title={CURE: an efficient clustering algorithm for large databases},
 author={Guha, Sudipto and Rastogi, Rajeev and Shim, Kyuseok},
 booktitle={ACM SIGMOD Record},
 volume={27},
 number={2},
 pages={73--84},
 year={1998},
 organization={ACM}
}

% R statistical computing language citation
% -----------------------------------------------------------------------------
@article{team2013r,
 title={R: A language and environment for statistical computing},
 author={Team, R Core and others},
 year={2013},
 publisher={Vienna, Austria}
}

% WEKA
% -----------------------------------------------------------------------------
@article{hall2009weka,
 title={The WEKA data mining software: an update},
 author={Hall, Mark and Frank, Eibe and Holmes, Geoffrey and Pfahringer, Bernhard and Reutemann, Peter and Witten, Ian H},
 journal={ACM SIGKDD explorations newsletter},
 volume={11},
 number={1},
 pages={10--18},
 year={2009},
 publisher={ACM}
}

% SPMF Java Machine Learning Library
% -----------------------------------------------------------------------------
@article{fournier2014spmf,
 title={SPMF: a Java open-source pattern mining library.},
 author={Fournier-Viger, Philippe and Gomariz, Antonio and Gueniche, Ted and Soltani, Azadeh and Wu, Cheng-Wei and Tseng, Vincent S and others},
 journal={Journal of Machine Learning Research},
 volume={15},
 number={1},
 pages={3389--3393},
 year={2014}
}

% Python Scikit Learn
% -----------------------------------------------------------------------------
@article{pedregosa2011scikit,
 title={Scikit-learn: Machine learning in Python},
 author={Pedregosa, Fabian and Varoquaux, Ga{\"e}l and Gramfort, Alexandre and Michel, Vincent and Thirion, Bertrand and Grisel, Olivier and Blondel, Mathieu and Prettenhofer, Peter and Weiss, Ron and Dubourg, Vincent and others},
 journal={Journal of Machine Learning Research},
 volume={12},
 number={Oct},
 pages={2825--2830},
 year={2011}
}

% MATLAB TOMCAT Toolkit
% -----------------------------------------------------------------------------
@article{daszykowski2007tomcat,
 title={TOMCAT: A MATLAB toolbox for multivariate calibration techniques},
 author={Daszykowski, Micha{\l} and Serneels, Sven and Kaczmarek, Krzysztof and Van Espen, Piet and Croux, Christophe and Walczak, Beata},
 journal={Chemometrics and intelligent laboratory systems},
 volume={85},
 number={2},
 pages={269--277},
 year={2007},
 publisher={Elsevier}
}

% OPTICS code for TOMCAT
% -----------------------------------------------------------------------------
@article{daszykowski2002looking,
 title={Looking for natural patterns in analytical data. 2. Tracing local density with OPTICS},
 author={Daszykowski, Michael and Walczak, Beata and Massart, Desire L},
 journal={Journal of chemical information and computer sciences},
 volume={42},
 number={3},
 pages={500--507},
 year={2002},
 publisher={ACS Publications}
}

% Java ML library
% -----------------------------------------------------------------------------
@comment{ Abeel, T.; de Peer, Y. V. & Saeys, Y. Java-ML: A Machine Learning
          Library, Journal of Machine Learning Research, 2009, 10, 931-934  }
@book{abeel2009journal,
author = "Abeel, T. ; de Peer and Y. V. and Saeys, Y. Java-ML: A Machine Learning Library",
title = "Journal of Machine Learning Research",
publisher = "10",
pages = "931--934",
year = 2009
}


% ELKI
% -----------------------------------------------------------------------------
@article{DBLP:journals/pvldb/SchubertKEZSZ15,
 author    = {Erich Schubert and
              Alexander Koos and
              Tobias Emrich and
              Andreas Z{\"{u}}fle and
              Klaus Arthur Schmid and
              Arthur Zimek},
 title     = {A Framework for Clustering Uncertain Data},
 journal   = {{PVLDB}},
 volume    = {8},
 number    = {12},
 pages     = {1976--1979},
 year      = {2015},
 url       = {http://www.vldb.org/pvldb/vol8/p1976-schubert.pdf},
 timestamp = {Mon, 30 May 2016 12:01:10 +0200},
 biburl    = {http://dblp.uni-trier.de/rec/bib/journals/pvldb/SchubertKEZSZ15},
 bibsource = {dblp computer science bibliography, http://dblp.org}
}

% BIRCH CRAN records
% -----------------------------------------------------------------------------
@misc{CRANPack84:online, author={CRAN}, title = {CRAN - Package birch}, howpublished = {\url{https://cran.r-project.org/web/packages/birch/index.html}}, month = {}, year = {2016}, note = {(Accessed on 09/16/2016)} }

% Spectral Clustering
% ----------------------------------------------------------------------------
@inproceedings{dhillon2004kernel,
 title={Kernel k-means: spectral clustering and normalized cuts},
 author={Dhillon, Inderjit S and Guan, Yuqiang and Kulis, Brian},
 booktitle={Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining},
 pages={551--556},
 year={2004},
 organization={ACM}
}


% Disjoint-set data structure (2 citations)
% -----------------------------------------------------------------------------
@misc{cormen2001introduction,
 title={Introduction to algorithms second edition},
 author={Cormen, Thomas H and Leiserson, Charles E and Rivest, Ronald L and Stein, Clifford},
 year={2001},
 publisher={The MIT Press}
}
@inproceedings{patwary2010experiments,
 title={Experiments on union-find algorithms for the disjoint-set data structure},
 author={Patwary, Md Mostofa Ali and Blair, Jean and Manne, Fredrik},
 booktitle={International Symposium on Experimental Algorithms},
 pages={411--423},
 year={2010},
 organization={Springer}
}

% SUBCLU high-dimensional density based clustering
% -----------------------------------------------------------------------------
@inproceedings{kailing2004density,
 title={Density-connected subspace clustering for high-dimensional data},
 author={Kailing, Karin and Kriegel, Hans-Peter and Kr{\"o}ger, Peer},
 booktitle={Proc. SDM},
 volume={4},
 year={2004},
 organization={SIAM}
}

% DBSCAN KDD Test of Time award
% -----------------------------------------------------------------------------
@misc{SIGKDDNe30:online,
author = {SIGKDD},
title = {SIGKDD News : 2014 SIGKDD Test of Time Award},
howpublished = {\url{http://www.kdd.org/News/view/2014-sigkdd-test-of-time-award}},
month = {},
year = {2014},
note = {(Accessed on 10/10/2016)}
}

% Raftery and Fraley's model-based clustering paper
% -----------------------------------------------------------------------------
@article{fraley2002model,
 title={Model-based clustering, discriminant analysis, and density estimation},
 author={Fraley, Chris and Raftery, Adrian E},
 journal={Journal of the American statistical Association},
 volume={97},
 number={458},
 pages={611--631},
 year={2002},
 publisher={Taylor \& Francis}
}

% FPC: Flexible Procedures for Clustering
% -----------------------------------------------------------------------------
@Manual{fpc,
title = {fpc: Flexible Procedures for Clustering},
author = {Christian Hennig},
year = {2015},
note = {R package version 2.1-10},
url = {https://CRAN.R-project.org/package=fpc},
}

% From the ELKI Benchmarking page
% -----------------------------------------------------------------------------
@article{kriegel2016black,
  title={The (black) art of runtime evaluation: Are we comparing algorithms or implementations?},
  author={Kriegel, Hans-Peter and Schubert, Erich and Zimek, Arthur},
  journal={Knowledge and Information Systems},
  pages={1--38},
  year={2016},
  publisher={Springer}
}

% ANN Library
% -----------------------------------------------------------------------------
@manual{mount1998ann,
 title={ANN: library for approximate nearest neighbour searching},
 author={Mount, David M and Arya, Sunil},
 year={2010},
 url = {http://www.cs.umd.edu/~mount/ANN/},
}

% Rcpp
% -----------------------------------------------------------------------------
@article{eddelbuettel2011rcpp,
 title={Rcpp: Seamless R and C++ integration},
 author={Eddelbuettel, Dirk and Fran{\c{c}}ois, Romain and Allaire, J and Chambers, John and Bates, Douglas and Ushey, Kevin},
 journal={Journal of Statistical Software},
 volume={40},
 number={8},
 pages={1--18},
 year={2011}
}

% ST-DBCAN: SpatioTemporal DBSCAN
% -----------------------------------------------------------------------------
@article{birant2007st,
 title={ST-DBSCAN: An algorithm for clustering spatial--temporal data},
 author={Birant, Derya and Kut, Alp},
 journal={Data \& Knowledge Engineering},
 volume={60},
 number={1},
 pages={208--221},
 year={2007},
 publisher={Elsevier}
}

% DBSCAN History (small relative to actual number of extensions)
% -----------------------------------------------------------------------------
@inproceedings{rehman2014dbscan,
 title={DBSCAN: Past, present and future},
 author={Rehman, Saif Ur and Asghar, Sohail and Fong, Simon and Sarasvady, S},
 booktitle={Applications of Digital Information and Web Technologies (ICADIWT), 2014 Fifth International Conference on the},
 pages={232--238},
 year={2014},
 organization={IEEE}
}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 								 Miscellaneous 						           %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



@article{Gupta2010,
abstract = {A key application of clustering data obtained from sources such as microarrays, protein mass spectroscopy, and phylogenetic profiles is the detection of functionally related genes. Typically, only a small number of functionally related genes cluster into one or more groups, and the rest need to be ignored. For such situations, we present Automated Hierarchical Density Shaving (Auto-HDS), a framework that consists of a fast hierarchical density-based clustering algorithm and an unsupervised model selection strategy. Auto-HDS can automatically select clusters of different densities, present them in a compact hierarchy, and rank individual clusters using an innovative stability criteria. Our framework also provides a simple yet powerful 2D visualization of the hierarchy of clusters that is useful for further interactive exploration. We present results on Gasch and Lee microarray data sets to show the effectiveness of our methods. Additional results on other biological data are included in the supplemental material.},
author = {Gupta, Gunjan and Liu, Alexander and Ghosh, Joydeep},
doi = {10.1109/TCBB.2008.32},
file = {:Users/mpiekenbrock/ResearchLibrary/Automated Hierarchical Density Shaving- A Robust Automated Clustering and Visualization Framework for Large Biological Data Sets.pdf:pdf},
isbn = {1557-9964},
issn = {15455963},
journal = {IEEE/ACM Transactions on Computational Biology and Bioinformatics},
keywords = {Bioinformatics,Clustering,Data and knowledge visualization,Mining methods and algorithms},
number = {2},
pages = {223--237},
pmid = {20431143},
title = {{Automated hierarchical density shaving: A robust automated clustering and visualization framework for large biological data sets}},
volume = {7},
year = {2010}
}
@article{Ssets,
   author = {P. Fr\"anti and O. Virmajoki},
   title = {Iterative shrinking method for clustering problems},
   journal = {Pattern Recognition},
   year = {2006},
   volume = {39},
   number = {5},
   pages = {761--765}
}

% Path and Spiral based
@article{chang2008robust,
 title={Robust path-based spectral clustering},
 author={Chang, Hong and Yeung, Dit-Yan},
 journal={Pattern Recognition},
 volume={41},
 number={1},
 pages={191--203},
 year={2008},
 publisher={Elsevier}
}

% Compound dataset
@article{zahn1971graph,
 title={Graph-theoretical methods for detecting and describing gestalt clusters},
 author={Zahn, Charles T},
 journal={IEEE Transactions on computers},
 volume={100},
 number={1},
 pages={68--86},
 year={1971},
 publisher={IEEE}
}

% Aggregation dataset
@article{gionis2007clustering,
 title={Clustering aggregation},
 author={Gionis, Aristides and Mannila, Heikki and Tsaparas, Panayiotis},
 journal={ACM Transactions on Knowledge Discovery from Data (TKDD)},
 volume={1},
 number={1},
 pages={4},
 year={2007},
 publisher={ACM}
}

% R15 dataset
@article{veenman2002maximum,
 title={A maximum variance cluster algorithm},
 author={Veenman, Cor J. and Reinders, Marcel J. T. and Backer, Eric},
 journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
 volume={24},
 number={9},
 pages={1273--1280},
 year={2002},
 publisher={IEEE}
}

@inproceedings{reilly2010detection,
 title={Detection and tracking of large number of targets in wide area surveillance},
 author={Reilly, Vladimir and Idrees, Haroon and Shah, Mubarak},
 booktitle={European Conference on Computer Vision},
 pages={186--199},
 year={2010},
 organization={Springer}
}

@inproceedings{jain2005law,
 title={Law, Data clustering: a user’s dilemma},
 author={Jain, Anil K and Martin, HC},
 booktitle={Proceedings of the First international conference on Pattern Recognition and Machine Intelligence},
 year={2005}
}

@article{jain1999review,
   author = {Jain, A. K. and Murty, M. N. and Flynn, P. J.},
   title = {Data Clustering: A Review},
   journal = {ACM Computuing Surveys},
   issue_date = {Sept. 1999},
   volume = {31},
   number = {3},
   month = sep,
   year = {1999},
   issn = {0360-0300},
   pages = {264--323},
   numpages = {60},
   url = {http://doi.acm.org/10.1145/331499.331504},
   doi = {10.1145/331499.331504},
   acmid = {331504},
   publisher = {ACM},
   address = {New York, NY, USA},
}

% Flame data set
@article{fu2007flame,
 title={FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data},
 author={Fu, Limin and Medico, Enzo},
 journal={BMC Bioinformatics},
 volume={8},
 number={1},
 pages={1},
 year={2007},
 publisher={BioMed Central}
}

% Birch dataset
@article{Birchsets,
   author = {T. Zhang and R. Ramakrishnan and M. Livny},
   title = {BIRCH: A new data clustering algorithm and its applications},
   journal = {Data Mining and Knowledge Discovery},
   year = {1997},
   volume = {1},
   number = {2},
   pages = {141--182}
}

@inproceedings{kisilevich2010p,
 title={P-DBSCAN: a density based clustering algorithm for exploration and analysis of attractive areas using collections of geo-tagged photos},
 author={Kisilevich, Slava and Mansmann, Florian and Keim, Daniel},
 booktitle={Proceedings of the 1st international conference and exhibition on computing for geospatial research \& application},
 pages={38},
 year={2010},
 organization={ACM}
}

@inproceedings{celebi2005mining,
 title={Mining biomedical images with density-based clustering},
 author={Celebi, M Emre and Aslandogan, Y Alp and Bergstresser, Paul R},
 booktitle={International Conference on Information Technology: Coding and Computing (ITCC'05)-Volume II},
 volume={1},
 pages={163--168},
 year={2005},
 organization={IEEE}
}

@inproceedings{ertoz2003finding,
 title={Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data.},
 author={Ert{\"o}z, Levent and Steinbach, Michael and Kumar, Vipin},
 booktitle={SDM},
 pages={47--58},
 year={2003},
 organization={SIAM}
}

@article{Chen2014,
author = {Chen, W and Ji, M H and Wang, J M},
doi = {10.3991/ijoe.v10i6.3881},
file = {:Users/mpiekenbrock/ResearchLibrary/TDBSCAN.pdf:pdf},
issn = {18612121},
journal = {International Journal of Online Engineering},
keywords = {Density-based clustering,Personal travel trajectory,T-DBSCAN,Trip segmentation},
number = {6},
pages = {19--24},
title = {{T-DBSCAN: A spatiotemporal density clustering for GPS trajectory segmentation}},
volume = {10},
year = {2014}
}


@incollection{sander2011density,
 title={Density-based clustering},
 author={Sander, Joerg},
 booktitle={Encyclopedia of Machine Learning},
 pages={270--273},
 year={2011},
 publisher={Springer}
}


% 88 citations
@article{verma2012comparative,
 title={A comparative study of various clustering algorithms in data mining},
 author={Verma, Manish and Srivastava, Mauly and Chack, Neha and Diswar, Atul Kumar and Gupta, Nidhi},
 journal={International Journal of Engineering Research and Applications (IJERA)},
 volume={2},
 number={3},
 pages={1379--1384},
 year={2012}
}

@inproceedings{roy2005approach,
 title={An approach to find embedded clusters using density based techniques},
 author={Roy, Swarup and Bhattacharyya, DK},
 booktitle={International Conference on Distributed Computing and Internet Technology},
 pages={523--535},
 year={2005},
 organization={Springer}
}

@inproceedings{chowdhury2010efficient,
 title={An efficient method for subjectively choosing parameter ‘k’automatically in VDBSCAN (Varied Density Based Spatial Clustering of Applications with Noise) algorithm},
 author={Chowdhury, AK M Rasheduzzaman and Mollah, Md Elias and Rahman, Md Asikur},
 booktitle={Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on},
 volume={1},
 pages={38--41},
 year={2010},
 organization={IEEE}
}

@inproceedings{ghanbarpour2014exdbscan,
 title={EXDBSCAN: An extension of DBSCAN to detect clusters in multi-density datasets},
 author={Ghanbarpour, Asieh and Minaei, Behrooz},
 booktitle={Intelligent Systems (ICIS), 2014 Iranian Conference on},
 pages={1--5},
 year={2014},
 organization={IEEE}
}

@inproceedings{vijayalakshmi2010improved,
 title={Improved varied density based spatial clustering algorithm with noise},
 author={Vijayalakshmi, S and Punithavalli, M},
 booktitle={Computational Intelligence and Computing Research (ICCIC), 2010 IEEE International Conference on},
 pages={1--4},
 year={2010},
 organization={IEEE}
}

@article{Wang2013,
author = {Wang, Wei},
file = {:Users/mpiekenbrock/Downloads/905067f5314e6073d4779c11572bd8c5.pdf:pdf},
isbn = {978-0-9891305-0-9},
keywords = {clustering algorithm,clustering techniques,data mining,derivative,global optimum k,similarity,similarity and minimizes intergroup,there are four basic,vdbscan},
pages = {225--228},
title = {{Improved VDBSCAN With Global Optimum K}},
year = {2013}
}

@article{parvez2012data,
 title={Data set property based ‘K’in VDBSCAN Clustering Algorithm},
 author={Parvez, Abu Wahid Md Masud},
 journal={World of Computer Science and Information Technology Journal (WCSIT)},
 volume={2},
 number={3},
 pages={115--119},
 year={2012}
}

@inproceedings{liu2007vdbscan,
 title={VDBSCAN: varied density based spatial clustering of applications with noise},
 author={Liu, Peng and Zhou, Dong and Wu, Naijun},
 booktitle={2007 International conference on service systems and service management},
 pages={1--4},
 year={2007},
 organization={IEEE}
}

@article{pei2009decode,
 title={DECODE: a new method for discovering clusters of different densities in spatial data},
 author={Pei, Tao and Jasra, Ajay and Hand, David J and Zhu, A-Xing and Zhou, Chenghu},
 journal={Data Mining and Knowledge Discovery},
 volume={18},
 number={3},
 pages={337--369},
 year={2009},
 publisher={Springer}
}

@article{duan2007local,
 title={A local-density based spatial clustering algorithm with noise},
 author={Duan, Lian and Xu, Lida and Guo, Feng and Lee, Jun and Yan, Baopin},
 journal={Information Systems},
 volume={32},
 number={7},
 pages={978--986},
 year={2007},
 publisher={Elsevier}
}

@inproceedings{li2007traffic,
 title={Traffic density-based discovery of hot routes in road networks},
 author={Li, Xiaolei and Han, Jiawei and Lee, Jae-Gil and Gonzalez, Hector},
 booktitle={International Symposium on Spatial and Temporal Databases},
 pages={441--459},
 year={2007},
 organization={Springer}
}

@article{tran2006knn,
 title={KNN-kernel density-based clustering for high-dimensional multivariate data},
 author={Tran, Thanh N and Wehrens, Ron and Buydens, Lutgarde MC},
 journal={Computational Statistics \& Data Analysis},
 volume={51},
 number={2},
 pages={513--525},
 year={2006},
 publisher={Elsevier}
}

@inproceedings{jiang2003dhc,
 title={DHC: a density-based hierarchical clustering method for time series gene expression data},
 author={Jiang, Daxin and Pei, Jian and Zhang, Aidong},
 booktitle={Bioinformatics and Bioengineering, 2003. Proceedings. Third IEEE Symposium on},
 pages={393--400},
 year={2003},
 organization={IEEE}
}

@inproceedings{kriegel2005density,
 title={Density-based clustering of uncertain data},
 author={Kriegel, Hans-Peter and Pfeifle, Martin},
 booktitle={Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining},
 pages={672--677},
 year={2005},
 organization={ACM}
}

@book{agrawal1998automatic,
 title={Automatic subspace clustering of high dimensional data for data mining applications},
 author={Agrawal, Rakesh and Gehrke, Johannes and Gunopulos, Dimitrios and Raghavan, Prabhakar},
 volume={27},
 number={2},
 year={1998},
 publisher={ACM}
}

@inproceedings{cao2006density,
 title={Density-Based Clustering over an Evolving Data Stream with Noise.},
 author={Cao, Feng and Ester, Martin and Qian, Weining and Zhou, Aoying},
 booktitle={SDM},
 volume={6},
 pages={328--339},
 year={2006},
 organization={SIAM}
}

@inproceedings{chen2007density,
 title={Density-based clustering for real-time stream data},
 author={Chen, Yixin and Tu, Li},
 booktitle={Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining},
 pages={133--142},
 year={2007},
 organization={ACM}
}


@article{kriegel:2011,
 title={Density-based clustering},
 author={Kriegel, Hans-Peter and Kr{\"o}ger, Peer and Sander, J{\"o}rg and Zimek Arthur},
 journal={Wires Data and Knowledge Discovery},
 volume={1},
 number={},
 pages={231--240},
 year={2011},
 publisher={John Wiley \& Sons}
}

@book{Aggarwal:2013,
    author = {Aggarwal, Charu C. and Reddy, Chandan K.},
    title = {Data Clustering: Algorithms and Applications},
    year = {2013},
    isbn = {1466558210, 9781466558212},
    edition = {1st},
    publisher = {Chapman \& Hall/CRC},
}

@book{Kaufman:1990,
    title = "Finding groups in data : an introduction to cluster analysis",
    author = "Kaufman, Leonard and Rousseeuw, Peter J.",
    series = "Wiley series in probability and mathematical statistics",
    publisher = "Wiley",
    address = "New York",
    isbn = "0-471-87876-6",
    year = 1990
}