File: LOF.R

package info (click to toggle)
r-cran-dbscan 1.2.2%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,196 kB
  • sloc: cpp: 4,359; sh: 13; makefile: 5
file content (205 lines) | stat: -rw-r--r-- 6,682 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#######################################################################
# dbscan - Density Based Clustering of Applications with Noise
#          and Related Algorithms
# Copyright (C) 2015 Michael Hahsler

# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.


#' Local Outlier Factor Score
#'
#' Calculate the Local Outlier Factor (LOF) score for each data point using a
#' kd-tree to speed up kNN search.
#'
#' LOF compares the local readability density (lrd) of an point to the lrd of
#' its neighbors. A LOF score of approximately 1 indicates that the lrd around
#' the point is comparable to the lrd of its neighbors and that the point is
#' not an outlier. Points that have a substantially lower lrd than their
#' neighbors are considered outliers and produce scores significantly larger
#' than 1.
#'
#' If a data matrix is specified, then Euclidean distances and fast nearest
#' neighbor search using a kd-tree is used.
#'
#' **Note on duplicate points:** If there are more than `minPts`
#' duplicates of a point in the data, then LOF the local readability distance
#' will be 0 resulting in an undefined LOF score of 0/0. We set LOF in this
#' case to 1 since there is already enough density from the points in the same
#' location to make them not outliers. The original paper by Breunig et al
#' (2000) assumes that the points are real duplicates and suggests to remove
#' the duplicates before computing LOF. If duplicate points are removed first,
#' then this LOF implementation in \pkg{dbscan} behaves like the one described
#' by Breunig et al.
#'
#' @aliases lof LOF
#' @family Outlier Detection Functions
#'
#' @param x a data matrix or a [dist] object.
#' @param minPts number of nearest neighbors used in defining the local
#' neighborhood of a point (includes the point itself).
#' @param ... further arguments are passed on to [kNN()].
#' Note: `sort` cannot be specified here since `lof()`
#' uses always `sort = TRUE`.
#'
#' @return A numeric vector of length `ncol(x)` containing LOF values for
#' all data points.
#'
#' @author Michael Hahsler
#' @references Breunig, M., Kriegel, H., Ng, R., and Sander, J. (2000). LOF:
#' identifying density-based local outliers. In _ACM Int. Conf. on
#' Management of Data,_ pages 93-104.
#' \doi{10.1145/335191.335388}
#' @keywords model
#' @examples
#' set.seed(665544)
#' n <- 100
#' x <- cbind(
#'   x=runif(10, 0, 5) + rnorm(n, sd = 0.4),
#'   y=runif(10, 0, 5) + rnorm(n, sd = 0.4)
#'   )
#'
#' ### calculate LOF score with a neighborhood of 3 points
#' lof <- lof(x, minPts = 3)
#'
#' ### distribution of outlier factors
#' summary(lof)
#' hist(lof, breaks = 10, main = "LOF (minPts = 3)")
#'
#' ### plot sorted lof. Looks like outliers start arounf a LOF of 2.
#' plot(sort(lof), type = "l",  main = "LOF (minPts = 3)",
#'   xlab = "Points sorted by LOF", ylab = "LOF")
#'
#' ### point size is proportional to LOF and mark points with a LOF > 2
#' plot(x, pch = ".", main = "LOF (minPts = 3)", asp = 1)
#' points(x, cex = (lof - 1) * 2, pch = 1, col = "red")
#' text(x[lof > 2,], labels = round(lof, 1)[lof > 2], pos = 3)
#' @export
lof <- function(x, minPts = 5, ...) {
  ### parse extra parameters
  extra <- list(...)

  # check for deprecated k
  if (!is.null(extra[["k"]])) {
    minPts <- extra[["k"]] + 1
    extra[["k"]] <- NULL
    warning("lof: k is now deprecated. use minPts = ", minPts, " instead .")
  }

  args <- c("search", "bucketSize", "splitRule", "approx")
  m <- pmatch(names(extra), args)
  if (anyNA(m))
    stop("Unknown parameter: ",
      toString(names(extra)[is.na(m)]))
  names(extra) <- args[m]

  search <- extra$search %||% "kdtree"
  search <- .parse_search(search)
  splitRule <- extra$splitRule %||% "suggest"
  splitRule <- .parse_splitRule(splitRule)
  bucketSize <- if (is.null(extra$bucketSize))
    10L
  else
    as.integer(extra$bucketSize)
  approx <- if (is.null(extra$approx))
    0
  else
    as.double(extra$approx)

  ### precompute distance matrix for dist search
  if (search == 3 && !inherits(x, "dist")) {
    if (.matrixlike(x))
      x <- dist(x)
    else
      stop("x needs to be a matrix to calculate distances")
  }

  # get and check n
  if (inherits(x, "dist"))
    n <- attr(x, "Size")
  else
    n <- nrow(x)
  if (is.null(n))
    stop("x needs to be a matrix or a dist object!")
  if (minPts < 2 || minPts > n)
    stop("minPts has to be at least 2 and not larger than the number of points")


  ### get LOF from a dist object
  if (inherits(x, "dist")) {
    if (anyNA(x))
      stop("NAs not allowed in dist for LOF!")

    # find k-NN distance, ids and distances
    x <- as.matrix(x)
    diag(x) <- Inf ### no self-matches
    o <- t(apply(x, 1, order, decreasing = FALSE))
    k_dist <- x[cbind(o[, minPts - 1], seq_len(n))]
    ids <-
      lapply(
        seq_len(n),
        FUN = function(i)
          which(x[i,] <= k_dist[i])
      )
    dist <-
      lapply(
        seq_len(n),
        FUN = function(i)
          x[i, x[i,] <= k_dist[i]]
      )

    ret <- list(k_dist = k_dist,
      ids = ids,
      dist = dist)

  } else{
    ### Use kd-tree

    if (anyNA(x))
      stop("NAs not allowed for LOF using kdtree!")

    ret <- lof_kNN(
      as.matrix(x),
      as.integer(minPts),
      as.integer(search),
      as.integer(bucketSize),
      as.integer(splitRule),
      as.double(approx)
    )
  }

  # calculate local reachability density (LRD)
  # reachability-distance_k(A,B) = max{k-distance(B), d(A,B)}
  # lrdk(A) = 1/(sum_B \in N_k(A) reachability-distance_k(A, B) / |N_k(A)|)
  lrd <- numeric(n)
  for (A in seq_len(n)) {
    Bs <- ret$ids[[A]]
    lrd[A] <-
      1 / (sum(pmax.int(ret$k_dist[Bs], ret$dist[[A]])) / length(Bs))
  }

  # calculate local outlier factor (LOF)
  # LOF_k(A) = sum_B \in N_k(A) lrd_k(B)/(|N_k(A)| lrdk(A))
  lof <- numeric(n)
  for (A in seq_len(n)) {
    Bs <- ret$ids[[A]]
    lof[A] <- sum(lrd[Bs]) / length(Bs) / lrd[A]
  }

  # with more than k duplicates lrd can become infinity
  # we define them not to be outliers
  lof[is.nan(lof)] <- 1

  lof
}