1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
|
#######################################################################
# dbscan - Density Based Clustering of Applications with Noise
# and Related Algorithms
# Copyright (C) 2015 Michael Hahsler
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#' Density-based Spatial Clustering of Applications with Noise (DBSCAN)
#'
#' Fast reimplementation of the DBSCAN (Density-based spatial clustering of
#' applications with noise) clustering algorithm using a kd-tree.
#'
#' The
#' implementation is significantly faster and can work with larger data sets
#' than [fpc::dbscan()] in \pkg{fpc}. Use `dbscan::dbscan()` (with specifying the package) to
#' call this implementation when you also load package \pkg{fpc}.
#'
#' **The algorithm**
#'
#' This implementation of DBSCAN follows the original
#' algorithm as described by Ester et al (1996). DBSCAN performs the following steps:
#'
#' 1. Estimate the density
#' around each data point by counting the number of points in a user-specified
#' eps-neighborhood and applies a used-specified minPts thresholds to identify
#' - core points (points with more than minPts points in their neighborhood),
#' - border points (non-core points with a core point in their neighborhood) and
#' - noise points (all other points).
#' 2. Core points form the backbone of clusters by joining them into
#' a cluster if they are density-reachable from each other (i.e., there is a chain of core
#' points where one falls inside the eps-neighborhood of the next).
#' 3. Border points are assigned to clusters. The algorithm needs parameters
#' `eps` (the radius of the epsilon neighborhood) and `minPts` (the
#' density threshold).
#'
#' Border points are arbitrarily assigned to clusters in the original
#' algorithm. DBSCAN* (see Campello et al 2013) treats all border points as
#' noise points. This is implemented with `borderPoints = FALSE`.
#'
#' **Specifying the data**
#'
#' If `x` is a matrix or a data.frame, then fast fixed-radius nearest
#' neighbor computation using a kd-tree is performed using Euclidean distance.
#' See [frNN()] for more information on the parameters related to
#' nearest neighbor search. **Note** that only numerical values are allowed in `x`.
#'
#' Any precomputed distance matrix (dist object) can be specified as `x`.
#' You may run into memory issues since distance matrices are large.
#'
#' A precomputed frNN object can be supplied as `x`. In this case
#' `eps` does not need to be specified. This option us useful for large
#' data sets, where a sparse distance matrix is available. See
#' [frNN()] how to create frNN objects.
#'
#' **Setting parameters for DBSCAN**
#'
#' The parameters `minPts` and `eps` define the minimum density required
#' in the area around core points which form the backbone of clusters.
#' `minPts` is the number of points
#' required in the neighborhood around the point defined by the parameter `eps`
#' (i.e., the radius around the point). Both parameters
#' depend on each other and changing one typically requires changing
#' the other one as well. The parameters also depend on the size of the data set with
#' larger datasets requiring a larger `minPts` or a smaller `eps`.
#'
#' * `minPts:` The original
#' DBSCAN paper (Ester et al, 1996) suggests to start by setting \eqn{\text{minPts} \ge d + 1},
#' the data dimensionality plus one or higher with a minimum of 3. Larger values
#' are preferable since increasing the parameter suppresses more noise in the data
#' by requiring more points to form clusters.
#' Sander et al (1998) uses in the examples two times the data dimensionality.
#' Note that setting \eqn{\text{minPts} \le 2} is equivalent to hierarchical clustering
#' with the single link metric and the dendrogram cut at height `eps`.
#'
#' * `eps:` A suitable neighborhood size
#' parameter `eps` given a fixed value for `minPts` can be found
#' visually by inspecting the [kNNdistplot()] of the data using
#' \eqn{k = \text{minPts} - 1} (`minPts` includes the point itself, while the
#' k-nearest neighbors distance does not). The k-nearest neighbor distance plot
#' sorts all data points by their k-nearest neighbor distance. A sudden
#' increase of the kNN distance (a knee) indicates that the points to the right
#' are most likely outliers. Choose `eps` for DBSCAN where the knee is.
#'
#' **Predict cluster memberships**
#'
#' [predict()] can be used to predict cluster memberships for new data
#' points. A point is considered a member of a cluster if it is within the eps
#' neighborhood of a core point of the cluster. Points
#' which cannot be assigned to a cluster will be reported as
#' noise points (i.e., cluster ID 0).
#' **Important note:** `predict()` currently can only use Euclidean distance to determine
#' the neighborhood of core points. If `dbscan()` was called using distances other than Euclidean,
#' then the neighborhood calculation will not be correct and only approximated by Euclidean
#' distances. If the data contain factor columns (e.g., using Gower's distance), then
#' the factors in `data` and `query` first need to be converted to numeric to use the
#' Euclidean approximation.
#'
#'
#' @aliases dbscan DBSCAN print.dbscan_fast
#' @family clustering functions
#'
#' @param x a data matrix, a data.frame, a [dist] object or a [frNN] object with
#' fixed-radius nearest neighbors.
#' @param eps size (radius) of the epsilon neighborhood. Can be omitted if
#' `x` is a frNN object.
#' @param minPts number of minimum points required in the eps neighborhood for
#' core points (including the point itself).
#' @param weights numeric; weights for the data points. Only needed to perform
#' weighted clustering.
#' @param borderPoints logical; should border points be assigned to clusters.
#' The default is `TRUE` for regular DBSCAN. If `FALSE` then border
#' points are considered noise (see DBSCAN* in Campello et al, 2013).
#' @param ... additional arguments are passed on to the fixed-radius nearest
#' neighbor search algorithm. See [frNN()] for details on how to
#' control the search strategy.
#'
#' @return `dbscan()` returns an object of class `dbscan_fast` with the following components:
#'
#' \item{eps }{ value of the `eps` parameter.}
#' \item{minPts }{ value of the `minPts` parameter.}
#' \item{metric }{ used distance metric.}
#' \item{cluster }{A integer vector with cluster assignments. Zero indicates noise points.}
#'
#' `is.corepoint()` returns a logical vector indicating for each data point if it is a
#' core point.
#'
#' @author Michael Hahsler
#' @references Hahsler M, Piekenbrock M, Doran D (2019). dbscan: Fast
#' Density-Based Clustering with R. _Journal of Statistical Software,_
#' 91(1), 1-30.
#' \doi{10.18637/jss.v091.i01}
#'
#' Martin Ester, Hans-Peter Kriegel, Joerg Sander, Xiaowei Xu (1996). A
#' Density-Based Algorithm for Discovering Clusters in Large Spatial Databases
#' with Noise. Institute for Computer Science, University of Munich.
#' _Proceedings of 2nd International Conference on Knowledge Discovery and
#' Data Mining (KDD-96),_ 226-231.
#' \url{https://dl.acm.org/doi/10.5555/3001460.3001507}
#'
#' Campello, R. J. G. B.; Moulavi, D.; Sander, J. (2013). Density-Based
#' Clustering Based on Hierarchical Density Estimates. Proceedings of the
#' 17th Pacific-Asia Conference on Knowledge Discovery in Databases, PAKDD
#' 2013, _Lecture Notes in Computer Science_ 7819, p. 160.
#' \doi{10.1007/978-3-642-37456-2_14}
#'
#' Sander, J., Ester, M., Kriegel, HP. et al. (1998). Density-Based
#' Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications.
#' _Data Mining and Knowledge Discovery_ 2, 169-194.
#' \doi{10.1023/A:1009745219419}
#'
#' @keywords model clustering
#' @examples
#' ## Example 1: use dbscan on the iris data set
#' data(iris)
#' iris <- as.matrix(iris[, 1:4])
#'
#' ## Find suitable DBSCAN parameters:
#' ## 1. We use minPts = dim + 1 = 5 for iris. A larger value can also be used.
#' ## 2. We inspect the k-NN distance plot for k = minPts - 1 = 4
#' kNNdistplot(iris, minPts = 5)
#'
#' ## Noise seems to start around a 4-NN distance of .7
#' abline(h=.7, col = "red", lty = 2)
#'
#' ## Cluster with the chosen parameters
#' res <- dbscan(iris, eps = .7, minPts = 5)
#' res
#'
#' pairs(iris, col = res$cluster + 1L)
#' clplot(iris, res)
#'
#' ## Use a precomputed frNN object
#' fr <- frNN(iris, eps = .7)
#' dbscan(fr, minPts = 5)
#'
#' ## Example 2: use data from fpc
#' set.seed(665544)
#' n <- 100
#' x <- cbind(
#' x = runif(10, 0, 10) + rnorm(n, sd = 0.2),
#' y = runif(10, 0, 10) + rnorm(n, sd = 0.2)
#' )
#'
#' res <- dbscan(x, eps = .3, minPts = 3)
#' res
#'
#' ## plot clusters and add noise (cluster 0) as crosses.
#' plot(x, col = res$cluster)
#' points(x[res$cluster == 0, ], pch = 3, col = "grey")
#'
#' clplot(x, res)
#' hullplot(x, res)
#'
#' ## Predict cluster membership for new data points
#' ## (Note: 0 means it is predicted as noise)
#' newdata <- x[1:5,] + rnorm(10, 0, .3)
#' hullplot(x, res)
#' points(newdata, pch = 3 , col = "red", lwd = 3)
#' text(newdata, pos = 1)
#'
#' pred_label <- predict(res, newdata, data = x)
#' pred_label
#' points(newdata, col = pred_label + 1L, cex = 2, lwd = 2)
#'
#' ## Compare speed against fpc version (if microbenchmark is installed)
#' ## Note: we use dbscan::dbscan to make sure that we do now run the
#' ## implementation in fpc.
#' \dontrun{
#' if (requireNamespace("fpc", quietly = TRUE) &&
#' requireNamespace("microbenchmark", quietly = TRUE)) {
#' t_dbscan <- microbenchmark::microbenchmark(
#' dbscan::dbscan(x, .3, 3), times = 10, unit = "ms")
#' t_dbscan_linear <- microbenchmark::microbenchmark(
#' dbscan::dbscan(x, .3, 3, search = "linear"), times = 10, unit = "ms")
#' t_dbscan_dist <- microbenchmark::microbenchmark(
#' dbscan::dbscan(x, .3, 3, search = "dist"), times = 10, unit = "ms")
#' t_fpc <- microbenchmark::microbenchmark(
#' fpc::dbscan(x, .3, 3), times = 10, unit = "ms")
#'
#' r <- rbind(t_fpc, t_dbscan_dist, t_dbscan_linear, t_dbscan)
#' r
#'
#' boxplot(r,
#' names = c('fpc', 'dbscan (dist)', 'dbscan (linear)', 'dbscan (kdtree)'),
#' main = "Runtime comparison in ms")
#'
#' ## speedup of the kd-tree-based version compared to the fpc implementation
#' median(t_fpc$time) / median(t_dbscan$time)
#' }}
#'
#' ## Example 3: manually create a frNN object for dbscan (dbscan only needs ids and eps)
#' nn <- structure(list(ids = list(c(2,3), c(1,3), c(1,2,3), c(3,5), c(4,5)), eps = 1),
#' class = c("NN", "frNN"))
#' nn
#' dbscan(nn, minPts = 2)
#'
#' @export
dbscan <-
function(x,
eps,
minPts = 5,
weights = NULL,
borderPoints = TRUE,
...) {
if (inherits(x, "frNN") && missing(eps))
eps <- x$eps
if (inherits(x, "dist")) {
.check_dist(x)
dist_method <- attr(x, "method")
} else
dist_method <- "euclidean"
if (is.null(dist_method))
dist_method <- "unknown"
### extra contains settings for frNN
### search = "kdtree", bucketSize = 10, splitRule = "suggest", approx = 0
### also check for MinPts for fpc compatibility (does not work for
### search method dist)
extra <- list(...)
args <-
c("MinPts", "search", "bucketSize", "splitRule", "approx")
m <- pmatch(names(extra), args)
if (anyNA(m))
stop("Unknown parameter: ",
toString(names(extra)[is.na(m)]))
names(extra) <- args[m]
if (!is.null(extra$MinPts)) {
warning("converting argument MinPts (fpc) to minPts (dbscan)!")
minPts <- extra$MinPts
}
extra$MinPts <- NULL
search <- extra$search %||% "kdtree"
splitRule <- extra$splitRule %||% "suggest"
search <- .parse_search(search)
splitRule <- .parse_splitRule(splitRule)
bucketSize <- if (is.null(extra$bucketSize))
10L
else
as.integer(extra$bucketSize)
approx <-
if (is.null(extra$approx))
0L
else
as.integer(extra$approx)
### do dist search
if (search == 3 && !inherits(x, "dist")) {
if (.matrixlike(x))
x <- dist(x)
else
stop("x needs to be a matrix to calculate distances")
}
## for dist we provide the R code with a frNN list and no x
frNN <- list()
if (inherits(x, "dist")) {
frNN <- frNN(x, eps, ...)$id
x <- matrix(0.0, nrow = 0, ncol = 0)
} else if (inherits(x, "frNN")) {
if (x$eps != eps) {
eps <- x$eps
warning("Using the eps of ",
eps,
" provided in the fixed-radius NN object.")
}
frNN <- x$id
x <- matrix(0.0, nrow = 0, ncol = 0)
} else {
if (!.matrixlike(x))
stop("x needs to be a matrix or data.frame.")
## make sure x is numeric
x <- as.matrix(x)
if (storage.mode(x) == "integer")
storage.mode(x) <- "double"
if (storage.mode(x) != "double")
stop("all data in x has to be numeric.")
}
if (length(frNN) == 0 && anyNA(x))
stop("data/distances cannot contain NAs for dbscan (with kd-tree)!")
## add self match and use C numbering if frNN is used
if (length(frNN) > 0)
frNN <-
lapply(
seq_along(frNN),
FUN = function(i)
c(i - 1L, frNN[[i]] - 1L)
)
if (length(minPts) != 1 ||
!is.finite(minPts) ||
minPts < 0)
stop("minPts need to be a single integer >=0.")
if (is.null(eps) ||
is.na(eps) || eps < 0)
stop("eps needs to be >=0.")
ret <- dbscan_int(
x,
as.double(eps),
as.integer(minPts),
as.double(weights),
as.integer(borderPoints),
as.integer(search),
as.integer(bucketSize),
as.integer(splitRule),
as.double(approx),
frNN
)
structure(
list(
cluster = ret,
eps = eps,
minPts = minPts,
metric = dist_method,
borderPoints = borderPoints
),
class = c("dbscan_fast", "dbscan")
)
}
#' @export
print.dbscan_fast <- function(x, ...) {
writeLines(c(
paste0("DBSCAN clustering for ", nobs(x), " objects."),
paste0("Parameters: eps = ", x$eps, ", minPts = ", x$minPts),
paste0(
"Using ",
x$metric,
" distances and borderpoints = ",
x$borderPoints
),
paste0(
"The clustering contains ",
ncluster(x),
" cluster(s) and ",
nnoise(x),
" noise points."
)
))
print(table(x$cluster))
cat("\n")
writeLines(strwrap(paste0(
"Available fields: ",
toString(names(x))
), exdent = 18))
}
#' @rdname dbscan
#' @export
is.corepoint <- function(x, eps, minPts = 5, ...)
lengths(frNN(x, eps = eps, ...)$id) >= (minPts - 1)
|