File: dbscan.R

package info (click to toggle)
r-cran-dbscan 1.2.2%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,196 kB
  • sloc: cpp: 4,359; sh: 13; makefile: 5
file content (417 lines) | stat: -rw-r--r-- 15,339 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
#######################################################################
# dbscan - Density Based Clustering of Applications with Noise
#          and Related Algorithms
# Copyright (C) 2015 Michael Hahsler
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.


#' Density-based Spatial Clustering of Applications with Noise (DBSCAN)
#'
#' Fast reimplementation of the DBSCAN (Density-based spatial clustering of
#' applications with noise) clustering algorithm using a kd-tree.
#'
#' The
#' implementation is significantly faster and can work with larger data sets
#' than [fpc::dbscan()] in \pkg{fpc}. Use `dbscan::dbscan()` (with specifying the package) to
#' call this implementation when you also load package \pkg{fpc}.
#'
#' **The algorithm**
#'
#' This implementation of DBSCAN follows the original
#' algorithm as described by Ester et al (1996). DBSCAN performs the following steps:
#'
#' 1. Estimate the density
#'   around each data point by counting the number of points in a user-specified
#'   eps-neighborhood and applies a used-specified minPts thresholds to identify
#'      - core points (points with more than minPts points in their neighborhood),
#'      - border points (non-core points with a core point in their neighborhood) and
#'      - noise points (all other points).
#' 2. Core points form the backbone of clusters by joining them into
#'   a cluster if they are density-reachable from each other (i.e., there is a chain of core
#'   points where one falls inside the eps-neighborhood of the next).
#' 3. Border points are assigned to clusters. The algorithm needs parameters
#'   `eps` (the radius of the epsilon neighborhood) and `minPts` (the
#'   density threshold).
#'
#' Border points are arbitrarily assigned to clusters in the original
#' algorithm. DBSCAN* (see Campello et al 2013) treats all border points as
#' noise points. This is implemented with `borderPoints = FALSE`.
#'
#' **Specifying the data**
#'
#' If `x` is a matrix or a data.frame, then fast fixed-radius nearest
#' neighbor computation using a kd-tree is performed using Euclidean distance.
#' See [frNN()] for more information on the parameters related to
#' nearest neighbor search. **Note** that only numerical values are allowed in `x`.
#'
#' Any precomputed distance matrix (dist object) can be specified as `x`.
#' You may run into memory issues since distance matrices are large.
#'
#' A precomputed frNN object can be supplied as `x`. In this case
#' `eps` does not need to be specified. This option us useful for large
#' data sets, where a sparse distance matrix is available. See
#' [frNN()] how to create frNN objects.
#'
#' **Setting parameters for DBSCAN**
#'
#' The parameters `minPts` and `eps` define the minimum density required
#' in the area around core points which form the backbone of clusters.
#' `minPts` is the number of points
#' required in the neighborhood around the point defined by the parameter `eps`
#' (i.e., the radius around the point). Both parameters
#' depend on each other and changing one typically requires changing
#' the other one as well. The parameters also depend on the size of the data set with
#' larger datasets requiring a larger `minPts` or a smaller `eps`.
#'
#' * `minPts:` The original
#' DBSCAN paper (Ester et al, 1996) suggests to start by setting \eqn{\text{minPts} \ge d + 1},
#' the data dimensionality plus one or higher with a minimum of 3. Larger values
#' are preferable since increasing the parameter suppresses more noise in the data
#' by requiring more points to form clusters.
#' Sander et al (1998) uses in the examples two times the data dimensionality.
#' Note that setting \eqn{\text{minPts} \le 2} is equivalent to hierarchical clustering
#' with the single link metric and the dendrogram cut at height `eps`.
#'
#' * `eps:` A suitable neighborhood size
#' parameter `eps` given a fixed value for `minPts` can be found
#' visually by inspecting the [kNNdistplot()] of the data using
#' \eqn{k = \text{minPts} - 1} (`minPts` includes the point itself, while the
#' k-nearest neighbors distance does not). The k-nearest neighbor distance plot
#' sorts all data points by their k-nearest neighbor distance. A sudden
#' increase of the kNN distance (a knee) indicates that the points to the right
#' are most likely outliers. Choose `eps` for DBSCAN where the knee is.
#'
#' **Predict cluster memberships**
#'
#' [predict()] can be used to predict cluster memberships for new data
#' points. A point is considered a member of a cluster if it is within the eps
#' neighborhood of a core point of the cluster. Points
#' which cannot be assigned to a cluster will be reported as
#' noise points (i.e., cluster ID 0).
#' **Important note:** `predict()` currently can only use Euclidean distance to determine
#' the neighborhood of core points. If `dbscan()` was called using distances other than Euclidean,
#' then the neighborhood calculation will not be correct and only approximated by Euclidean
#' distances. If the data contain factor columns (e.g., using Gower's distance), then
#' the factors in `data` and `query` first need to be converted to numeric to use the
#' Euclidean approximation.
#'
#'
#' @aliases dbscan DBSCAN print.dbscan_fast
#' @family clustering functions
#'
#' @param x a data matrix, a data.frame, a [dist] object or a [frNN] object with
#' fixed-radius nearest neighbors.
#' @param eps size (radius) of the epsilon neighborhood. Can be omitted if
#' `x` is a frNN object.
#' @param minPts number of minimum points required in the eps neighborhood for
#' core points (including the point itself).
#' @param weights numeric; weights for the data points. Only needed to perform
#' weighted clustering.
#' @param borderPoints logical; should border points be assigned to clusters.
#' The default is `TRUE` for regular DBSCAN. If `FALSE` then border
#' points are considered noise (see DBSCAN* in Campello et al, 2013).
#' @param ...  additional arguments are passed on to the fixed-radius nearest
#' neighbor search algorithm. See [frNN()] for details on how to
#' control the search strategy.
#'
#' @return `dbscan()` returns an object of class `dbscan_fast` with the following components:
#'
#' \item{eps }{ value of the `eps` parameter.}
#' \item{minPts }{ value of the `minPts` parameter.}
#' \item{metric }{ used distance metric.}
#' \item{cluster }{A integer vector with cluster assignments. Zero indicates noise points.}
#'
#' `is.corepoint()` returns a logical vector indicating for each data point if it is a
#'   core point.
#'
#' @author Michael Hahsler
#' @references Hahsler M, Piekenbrock M, Doran D (2019). dbscan: Fast
#' Density-Based Clustering with R.  _Journal of Statistical Software,_
#' 91(1), 1-30.
#' \doi{10.18637/jss.v091.i01}
#'
#' Martin Ester, Hans-Peter Kriegel, Joerg Sander, Xiaowei Xu (1996). A
#' Density-Based Algorithm for Discovering Clusters in Large Spatial Databases
#' with Noise. Institute for Computer Science, University of Munich.
#' _Proceedings of 2nd International Conference on Knowledge Discovery and
#' Data Mining (KDD-96),_ 226-231.
#' \url{https://dl.acm.org/doi/10.5555/3001460.3001507}
#'
#' Campello, R. J. G. B.; Moulavi, D.; Sander, J. (2013). Density-Based
#' Clustering Based on Hierarchical Density Estimates. Proceedings of the
#' 17th Pacific-Asia Conference on Knowledge Discovery in Databases, PAKDD
#' 2013, _Lecture Notes in Computer Science_ 7819, p. 160.
#' \doi{10.1007/978-3-642-37456-2_14}
#'
#' Sander, J., Ester, M., Kriegel, HP. et al. (1998). Density-Based
#' Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications.
#' _Data Mining and Knowledge Discovery_ 2, 169-194.
#' \doi{10.1023/A:1009745219419}
#'
#' @keywords model clustering
#' @examples
#' ## Example 1: use dbscan on the iris data set
#' data(iris)
#' iris <- as.matrix(iris[, 1:4])
#'
#' ## Find suitable DBSCAN parameters:
#' ## 1. We use minPts = dim + 1 = 5 for iris. A larger value can also be used.
#' ## 2. We inspect the k-NN distance plot for k = minPts - 1 = 4
#' kNNdistplot(iris, minPts = 5)
#'
#' ## Noise seems to start around a 4-NN distance of .7
#' abline(h=.7, col = "red", lty = 2)
#'
#' ## Cluster with the chosen parameters
#' res <- dbscan(iris, eps = .7, minPts = 5)
#' res
#'
#' pairs(iris, col = res$cluster + 1L)
#' clplot(iris, res)
#'
#' ## Use a precomputed frNN object
#' fr <- frNN(iris, eps = .7)
#' dbscan(fr, minPts = 5)
#'
#' ## Example 2: use data from fpc
#' set.seed(665544)
#' n <- 100
#' x <- cbind(
#'   x = runif(10, 0, 10) + rnorm(n, sd = 0.2),
#'   y = runif(10, 0, 10) + rnorm(n, sd = 0.2)
#'   )
#'
#' res <- dbscan(x, eps = .3, minPts = 3)
#' res
#'
#' ## plot clusters and add noise (cluster 0) as crosses.
#' plot(x, col = res$cluster)
#' points(x[res$cluster == 0, ], pch = 3, col = "grey")
#'
#' clplot(x, res)
#' hullplot(x, res)
#'
#' ## Predict cluster membership for new data points
#' ## (Note: 0 means it is predicted as noise)
#' newdata <- x[1:5,] + rnorm(10, 0, .3)
#' hullplot(x, res)
#' points(newdata, pch = 3 , col = "red", lwd = 3)
#' text(newdata, pos = 1)
#'
#' pred_label <- predict(res, newdata, data = x)
#' pred_label
#' points(newdata, col = pred_label + 1L,  cex = 2, lwd = 2)
#'
#' ## Compare speed against fpc version (if microbenchmark is installed)
#' ## Note: we use dbscan::dbscan to make sure that we do now run the
#' ## implementation in fpc.
#' \dontrun{
#' if (requireNamespace("fpc", quietly = TRUE) &&
#'     requireNamespace("microbenchmark", quietly = TRUE)) {
#'   t_dbscan <- microbenchmark::microbenchmark(
#'     dbscan::dbscan(x, .3, 3), times = 10, unit = "ms")
#'   t_dbscan_linear <- microbenchmark::microbenchmark(
#'     dbscan::dbscan(x, .3, 3, search = "linear"), times = 10, unit = "ms")
#'   t_dbscan_dist <- microbenchmark::microbenchmark(
#'     dbscan::dbscan(x, .3, 3, search = "dist"), times = 10, unit = "ms")
#'   t_fpc <- microbenchmark::microbenchmark(
#'     fpc::dbscan(x, .3, 3), times = 10, unit = "ms")
#'
#'   r <- rbind(t_fpc, t_dbscan_dist, t_dbscan_linear, t_dbscan)
#'   r
#'
#'   boxplot(r,
#'     names = c('fpc', 'dbscan (dist)', 'dbscan (linear)', 'dbscan (kdtree)'),
#'     main = "Runtime comparison in ms")
#'
#'   ## speedup of the kd-tree-based version compared to the fpc implementation
#'   median(t_fpc$time) / median(t_dbscan$time)
#' }}
#'
#' ## Example 3: manually create a frNN object for dbscan (dbscan only needs ids and eps)
#' nn <- structure(list(ids = list(c(2,3), c(1,3), c(1,2,3), c(3,5), c(4,5)), eps = 1),
#'   class =  c("NN", "frNN"))
#' nn
#' dbscan(nn, minPts = 2)
#'
#' @export
dbscan <-
  function(x,
    eps,
    minPts = 5,
    weights = NULL,
    borderPoints = TRUE,
    ...) {
    if (inherits(x, "frNN") && missing(eps))
      eps <- x$eps

    if (inherits(x, "dist")) {
      .check_dist(x)
      dist_method <- attr(x, "method")
    } else
      dist_method <- "euclidean"

    if (is.null(dist_method))
      dist_method <- "unknown"

    ### extra contains settings for frNN
    ### search = "kdtree", bucketSize = 10, splitRule = "suggest", approx = 0
    ### also check for MinPts for fpc compatibility (does not work for
    ### search method dist)
    extra <- list(...)
    args <-
      c("MinPts", "search", "bucketSize", "splitRule", "approx")
    m <- pmatch(names(extra), args)
    if (anyNA(m))
      stop("Unknown parameter: ",
        toString(names(extra)[is.na(m)]))
    names(extra) <- args[m]

    if (!is.null(extra$MinPts)) {
      warning("converting argument MinPts (fpc) to minPts (dbscan)!")
      minPts <- extra$MinPts
    }
    extra$MinPts <- NULL

    search <- extra$search %||% "kdtree"
    splitRule <- extra$splitRule %||% "suggest"
    search <- .parse_search(search)
    splitRule <- .parse_splitRule(splitRule)

    bucketSize <- if (is.null(extra$bucketSize))
      10L
    else
      as.integer(extra$bucketSize)

    approx <-
      if (is.null(extra$approx))
        0L
    else
      as.integer(extra$approx)

    ### do dist search
    if (search == 3 && !inherits(x, "dist")) {
      if (.matrixlike(x))
        x <- dist(x)
      else
        stop("x needs to be a matrix to calculate distances")
    }

    ## for dist we provide the R code with a frNN list and no x
    frNN <- list()
    if (inherits(x, "dist")) {
      frNN <- frNN(x, eps, ...)$id
      x <- matrix(0.0, nrow = 0, ncol = 0)
    } else if (inherits(x, "frNN")) {
      if (x$eps != eps) {
        eps <- x$eps
        warning("Using the eps of ",
          eps,
          " provided in the fixed-radius NN object.")
      }
      frNN <- x$id
      x <- matrix(0.0, nrow = 0, ncol = 0)

    } else {
      if (!.matrixlike(x))
        stop("x needs to be a matrix or data.frame.")
      ## make sure x is numeric
      x <- as.matrix(x)
      if (storage.mode(x) == "integer")
        storage.mode(x) <- "double"
      if (storage.mode(x) != "double")
        stop("all data in x has to be numeric.")
    }

    if (length(frNN) == 0 && anyNA(x))
      stop("data/distances cannot contain NAs for dbscan (with kd-tree)!")

    ## add self match and use C numbering if frNN is used
    if (length(frNN) > 0)
      frNN <-
      lapply(
        seq_along(frNN),
        FUN = function(i)
          c(i - 1L, frNN[[i]] - 1L)
      )

    if (length(minPts) != 1 ||
        !is.finite(minPts) ||
        minPts < 0)
      stop("minPts need to be a single integer >=0.")

    if (is.null(eps) ||
        is.na(eps) || eps < 0)
      stop("eps needs to be >=0.")

    ret <- dbscan_int(
      x,
      as.double(eps),
      as.integer(minPts),
      as.double(weights),
      as.integer(borderPoints),
      as.integer(search),
      as.integer(bucketSize),
      as.integer(splitRule),
      as.double(approx),
      frNN
    )

    structure(
      list(
        cluster = ret,
        eps = eps,
        minPts = minPts,
        metric = dist_method,
        borderPoints = borderPoints
      ),
      class = c("dbscan_fast", "dbscan")
    )
  }

#' @export
print.dbscan_fast <- function(x, ...) {
  writeLines(c(
    paste0("DBSCAN clustering for ", nobs(x), " objects."),
    paste0("Parameters: eps = ", x$eps, ", minPts = ", x$minPts),
    paste0(
      "Using ",
      x$metric,
      " distances and borderpoints = ",
      x$borderPoints
    ),
    paste0(
      "The clustering contains ",
      ncluster(x),
      " cluster(s) and ",
      nnoise(x),
      " noise points."
    )
  ))

  print(table(x$cluster))
  cat("\n")

  writeLines(strwrap(paste0(
    "Available fields: ",
    toString(names(x))
  ), exdent = 18))
}

#' @rdname dbscan
#' @export
is.corepoint <- function(x, eps, minPts = 5, ...)
  lengths(frNN(x, eps = eps, ...)$id) >= (minPts - 1)