File: hdbscan.R

package info (click to toggle)
r-cran-dbscan 1.2.2%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,196 kB
  • sloc: cpp: 4,359; sh: 13; makefile: 5
file content (512 lines) | stat: -rw-r--r-- 18,513 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
#######################################################################
# dbscan - Density Based Clustering of Applications with Noise
#          and Related Algorithms
# Copyright (C) 2015 Michael Hahsler, Matt Piekenbrock

# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

#' Hierarchical DBSCAN (HDBSCAN)
#'
#' Fast C++ implementation of the HDBSCAN (Hierarchical DBSCAN) and its related
#' algorithms.
#'
#' This fast implementation of HDBSCAN (Campello et al., 2013) computes the
#' hierarchical cluster tree representing density estimates along with the
#' stability-based flat cluster extraction. HDBSCAN essentially computes the
#' hierarchy of all DBSCAN* clusterings, and
#' then uses a stability-based extraction method to find optimal cuts in the
#' hierarchy, thus producing a flat solution.
#'
#' HDBSCAN performs the following steps:
#'
#' 1. Compute mutual reachability distance mrd between points
#'    (based on distances and core distances).
#' 2. Use mdr as a distance measure to construct a minimum spanning tree.
#' 3. Prune the tree using stability.
#' 4. Extract the clusters.
#'
#' Additional, related algorithms including the "Global-Local Outlier Score
#' from Hierarchies" (GLOSH; see section 6 of Campello et al., 2015)
#' is available in function [glosh()]
#' and the ability to cluster based on instance-level constraints (see
#' section 5.3 of Campello et al. 2015) are supported. The algorithms only need
#' the parameter `minPts`.
#'
#' Note that `minPts` not only acts as a minimum cluster size to detect,
#' but also as a "smoothing" factor of the density estimates implicitly
#' computed from HDBSCAN.
#'
#' When using the optional parameter `cluster_selection_epsilon`,
#' a combination between DBSCAN* and HDBSCAN* can be achieved
#' (see Malzer & Baum 2020). This means that part of the
#' tree is affected by `cluster_selection_epsilon` as if
#' running DBSCAN* with `eps` = `cluster_selection_epsilon`.
#' The remaining part (on levels above the threshold) is still
#' processed by HDBSCAN*'s stability-based selection algorithm
#' and can therefore return clusters of variable densities.
#' Note that there is not always a remaining part, especially if
#' the parameter value is chosen too large, or if there aren't
#' enough clusters of variable densities. In this case, the result
#' will be equal to DBSCAN*.
# `cluster_selection_epsilon` is especially useful for cases
#' where HDBSCAN* produces too many small clusters that
#' need to be merged, while still being able to extract clusters
#' of variable densities at higher levels.
#'
#' `coredist()`: The core distance is defined for each point as
#' the distance to the `MinPts - 1`'s neighbor.
#' It is a density estimate equivalent to `kNNdist()` with `k = MinPts -1`.
#'
#' `mrdist()`: The mutual reachability distance is defined between two points as
#' `mrd(a, b) = max(coredist(a), coredist(b), dist(a, b))`. This distance metric is used by
#' HDBSCAN. It has the effect of increasing distances in low density areas.
#'
#' `predict()` assigns each new data point to the same cluster as the nearest point
#' if it is not more than that points core distance away. Otherwise the new point
#' is classified as a noise point (i.e., cluster ID 0).
#' @aliases hdbscan HDBSCAN print.hdbscan
#'
#' @family HDBSCAN functions
#' @family clustering functions
#'
#' @param x a data matrix (Euclidean distances are used) or a [dist] object
#' calculated with an arbitrary distance metric.
#' @param minPts integer; Minimum size of clusters. See details.
#' @param cluster_selection_epsilon double; a distance threshold below which
#  no clusters should be selected (see Malzer & Baum 2020)
#' @param gen_hdbscan_tree logical; should the robust single linkage tree be
#' explicitly computed (see cluster tree in Chaudhuri et al, 2010).
#' @param gen_simplified_tree logical; should the simplified hierarchy be
#' explicitly computed (see Campello et al, 2013).
#' @param verbose report progress.
#' @param ...  additional arguments are passed on.
#' @param scale integer; used to scale condensed tree based on the graphics
#' device. Lower scale results in wider trees.
#' @param gradient character vector; the colors to build the condensed tree
#' coloring with.
#' @param show_flat logical; whether to draw boxes indicating the most stable
#' clusters.
#' @param coredist numeric vector with precomputed core distances (optional).
#'
#' @return `hdbscan()` returns object of class `hdbscan` with the following components:
#' \item{cluster }{A integer vector with cluster assignments. Zero indicates
#' noise points.}
#' \item{minPts }{ value of the `minPts` parameter.}
#' \item{cluster_scores }{The sum of the stability scores for each salient
#' (flat) cluster. Corresponds to cluster IDs given the in `"cluster"` element.
#' }
#' \item{membership_prob }{The probability or individual stability of a
#' point within its clusters. Between 0 and 1.}
#' \item{outlier_scores }{The GLOSH outlier score of each point. }
#' \item{hc }{An [hclust] object of the HDBSCAN hierarchy. }
#'
#' `coredist()` returns a vector with the core distance for each data point.
#'
#' `mrdist()` returns a [dist] object containing pairwise mutual reachability distances.
#'
#' @author Matt Piekenbrock
#' @author Claudia Malzer (added cluster_selection_epsilon)
#'
#' @references
#' Campello RJGB, Moulavi D, Sander J (2013). Density-Based Clustering Based on
#' Hierarchical Density Estimates. Proceedings of the 17th Pacific-Asia
#' Conference on Knowledge Discovery in Databases, PAKDD 2013, _Lecture Notes
#' in Computer Science_ 7819, p. 160.
#' \doi{10.1007/978-3-642-37456-2_14}
#'
#' Campello RJGB, Moulavi D, Zimek A, Sander J (2015). Hierarchical density
#' estimates for data clustering, visualization, and outlier detection.
#' _ACM Transactions on Knowledge Discovery from Data (TKDD),_ 10(5):1-51.
#' \doi{10.1145/2733381}
#'
#' Malzer, C., & Baum, M. (2020). A Hybrid Approach To Hierarchical
#' Density-based Cluster Selection.
#' In 2020 IEEE International Conference on Multisensor Fusion
#' and Integration for Intelligent Systems (MFI), pp. 223-228.
#' \doi{10.1109/MFI49285.2020.9235263}
#' @keywords model clustering hierarchical
#' @examples
#' ## cluster the moons data set with HDBSCAN
#' data(moons)
#'
#' res <- hdbscan(moons, minPts = 5)
#' res
#'
#' plot(res)
#' clplot(moons, res)
#'
#' ## cluster the moons data set with HDBSCAN using Manhattan distances
#' res <- hdbscan(dist(moons, method = "manhattan"), minPts = 5)
#' plot(res)
#' clplot(moons, res)
#'
#' ## Example for HDBSCAN(e) using cluster_selection_epsilon
#' # data with clusters of various densities.
#' X <- data.frame(
#'  x = c(
#'   0.08, 0.46, 0.46, 2.95, 3.50, 1.49, 6.89, 6.87, 0.21, 0.15,
#'   0.15, 0.39, 0.80, 0.80, 0.37, 3.63, 0.35, 0.30, 0.64, 0.59, 1.20, 1.22,
#'   1.42, 0.95, 2.70, 6.36, 6.36, 6.36, 6.60, 0.04, 0.71, 0.57, 0.24, 0.24,
#'   0.04, 0.04, 1.35, 0.82, 1.04, 0.62, 0.26, 5.98, 1.67, 1.67, 0.48, 0.15,
#'   6.67, 6.67, 1.20, 0.21, 3.99, 0.12, 0.19, 0.15, 6.96, 0.26, 0.08, 0.30,
#'   1.04, 1.04, 1.04, 0.62, 0.04, 0.04, 0.04, 0.82, 0.82, 1.29, 1.35, 0.46,
#'   0.46, 0.04, 0.04, 5.98, 5.98, 6.87, 0.37, 6.47, 6.47, 6.47, 6.67, 0.30,
#'   1.49, 3.21, 3.21, 0.75, 0.75, 0.46, 0.46, 0.46, 0.46, 3.63, 0.39, 3.65,
#'   4.09, 4.01, 3.36, 1.43, 3.28, 5.94, 6.35, 6.87, 5.60, 5.99, 0.12, 0.00,
#'   0.32, 0.39, 0.00, 1.63, 1.36, 5.67, 5.60, 5.79, 1.10, 2.99, 0.39, 0.18
#'   ),
#'  y = c(
#'   7.41, 8.01, 8.01, 5.44, 7.11, 7.13, 1.83, 1.83, 8.22, 8.08,
#'   8.08, 7.20, 7.83, 7.83, 8.29, 5.99, 8.32, 8.22, 7.38, 7.69, 8.22, 7.31,
#'   8.25, 8.39, 6.34, 0.16, 0.16, 0.16, 1.66, 7.55, 7.90, 8.18, 8.32, 8.32,
#'   7.97, 7.97, 8.15, 8.43, 7.83, 8.32, 8.29, 1.03, 7.27, 7.27, 8.08, 7.27,
#'   0.79, 0.79, 8.22, 7.73, 6.62, 7.62, 8.39, 8.36, 1.73, 8.29, 8.04, 8.22,
#'   7.83, 7.83, 7.83, 8.32, 8.11, 7.69, 7.55, 7.20, 7.20, 8.01, 8.15, 7.55,
#'   7.55, 7.97, 7.97, 1.03, 1.03, 1.24, 7.20, 0.47, 0.47, 0.47, 0.79, 8.22,
#'   7.13, 6.48, 6.48, 7.10, 7.10, 8.01, 8.01, 8.01, 8.01, 5.99, 8.04, 5.22,
#'   5.82, 5.14, 4.81, 7.62, 5.73, 0.55, 1.31, 0.05, 0.95, 1.59, 7.99, 7.48,
#'   8.38, 7.12, 2.01, 1.40, 0.00, 9.69, 9.47, 9.25, 2.63, 6.89, 0.56, 3.11
#'  )
#' )
#'
#' ## HDBSCAN splits one cluster
#' hdb <- hdbscan(X, minPts = 3)
#' plot(hdb, show_flat = TRUE)
#' hullplot(X, hdb, main = "HDBSCAN")
#'
#' ## DBSCAN* marks the least dense cluster as outliers
#' db <- dbscan(X, eps = 1, minPts = 3, borderPoints = FALSE)
#' hullplot(X, db, main = "DBSCAN*")
#'
#' ## HDBSCAN(e) mixes HDBSCAN AND DBSCAN* to find all clusters
#' hdbe <- hdbscan(X, minPts = 3, cluster_selection_epsilon = 1)
#' plot(hdbe, show_flat = TRUE)
#' hullplot(X, hdbe, main = "HDBSCAN(e)")
#' @export
hdbscan <- function(x,
                    minPts,
                    cluster_selection_epsilon = 0.0,
                    gen_hdbscan_tree = FALSE,
                    gen_simplified_tree = FALSE,
                    verbose = FALSE) {
  if (!inherits(x, "dist") && !.matrixlike(x)) {
    stop("hdbscan expects a numeric matrix or a dist object.")
  }

  ## 1. Calculate the mutual reachability between points
  if (verbose) {
    cat("Calculating core distances...\n")
  }
  coredist <- coredist(x, minPts)


  if (verbose) {
    cat("Calculating the mutual reachability matrix distances...\n")
  }
  mrd <- mrdist(x, minPts, coredist = coredist)
  n <- attr(mrd, "Size")

  ## 2. Construct a minimum spanning tree and convert to RSL representation
  if (verbose) {
    cat("Constructing the minimum spanning tree...\n")
  }
  mst <- mst(mrd, n)
  hc <- hclustMergeOrder(mst, order(mst[, 3]))
  hc$call <- match.call()

  ## 3. Prune the tree
  ## Process the hierarchy to retrieve all the necessary info needed by HDBSCAN
  if (verbose) {
    cat("Tree pruning...\n")
  }
  res <- computeStability(hc, minPts, compute_glosh = TRUE)
  res <- extractUnsupervised(res, cluster_selection_epsilon = cluster_selection_epsilon)
  cl <- attr(res, "cluster")

  ## 4. Extract the clusters
  if (verbose) {
    cat("Extract clusters...\n")
  }
  sl <- attr(res, "salient_clusters")

  ## Generate membership 'probabilities' using core distance as the measure of density
  prob <- rep(0, length(cl))
  for (cid in sl) {
    max_f <- max(coredist[which(cl == cid)])
    pr <- (max_f - coredist[which(cl == cid)]) / max_f
    prob[cl == cid] <- pr
  }

  ## Match cluster assignments to be incremental, with 0 representing noise
  if (any(cl == 0)) {
    cluster <- match(cl, c(0, sl)) - 1
  } else {
    cluster <- match(cl, sl)
  }
  cl_map <-
    structure(sl, names = unique(cluster[hc$order][cluster[hc$order] != 0]))

  ## Stability scores
  ## NOTE: These scores represent the stability scores -before- the hierarchy traversal
  cluster_scores <-
    vapply(sl, function(sl_cid) {
      res[[as.character(sl_cid)]]$stability
    }, numeric(1L))
  names(cluster_scores) <- names(cl_map)

  ## Return everything HDBSCAN does
  attr(res, "cl_map") <-
    cl_map # Mapping of hierarchical IDS to 'normalized' incremental ids
  out <- structure(
    list(
      cluster = cluster,
      minPts = minPts,
      coredist = coredist,
      cluster_scores = cluster_scores,
      # (Cluster-wide cumulative) Stability Scores
      membership_prob = prob,
      # Individual point membership probabilities
      outlier_scores = attr(res, "glosh"),
      # Outlier Scores
      hc = hc # Hclust object of MST (can be cut for quick assignments)
    ),
    class = "hdbscan",
    hdbscan = res
  ) # hdbscan attributes contains actual HDBSCAN hierarchy

  ## The trees don't need to be explicitly computed, but they may be useful if the user wants them
  if (gen_hdbscan_tree) {
    out$hdbscan_tree <- buildDendrogram(hc)
  }
  if (gen_simplified_tree) {
    out$simplified_tree <- simplifiedTree(res)
  }
  return(out)
}

#' @rdname hdbscan
#' @export
print.hdbscan <- function(x, ...) {
  writeLines(c(
    paste0("HDBSCAN clustering for ", nobs(x), " objects."),
    paste0("Parameters: minPts = ", x$minPts),
    paste0(
      "The clustering contains ",
      ncluster(x),
      " cluster(s) and ",
      nnoise(x),
      " noise points."
    )
  ))

  print(table(x$cluster))
  cat("\n")
  writeLines(strwrap(paste0("Available fields: ", toString(names(
    x
  ))), exdent = 18))
}

#' @rdname hdbscan
#' @export
plot.hdbscan <-
  function(x,
           scale = "suggest",
           gradient = c("yellow", "red"),
           show_flat = FALSE,
           ...) {
    ## Logic checks
    if (!(scale == "suggest" ||
          scale > 0.0)) {
      stop("scale parameter must be greater than 0.")
    }

    ## Main information needed
    hd_info <- attr(x, "hdbscan")
    dend <- x$simplified_tree %||% simplifiedTree(hd_info)
    coords <-
      node_xy(hd_info, cl_hierarchy = attr(hd_info, "cl_hierarchy"))

    ## Variables to help setup the scaling of the plotting
    nclusters <- length(hd_info)
    npoints <- length(x$cluster)
    nleaves <-
      length(all_children(
        attr(hd_info, "cl_hierarchy"),
        key = 0,
        leaves_only = TRUE
      ))
    scale <-
      if (scale == "suggest")
        nclusters
    else
      nclusters / scale

    ## Color variables
    col_breaks <-
      seq(0, length(x$cluster) + nclusters, by = nclusters)
    gcolors <-
      grDevices::colorRampPalette(gradient)(length(col_breaks))

    ## Depth-first search to recursively plot rectangles
    eps_dfs <- function(dend, index, parent_height, scale) {
      coord <- coords[index, ]
      cl_key <- as.character(attr(dend, "label"))

      ## widths == number of points in the cluster at each eps it was alive
      widths <-
        vapply(sort(hd_info[[cl_key]]$eps, decreasing = TRUE), function(eps) {
          sum(hd_info[[cl_key]]$eps <= eps)
        }, numeric(1L))
      if (length(widths) > 0) {
        widths <- c(widths + hd_info[[cl_key]]$n_children,
                    rep(hd_info[[cl_key]]$n_children, hd_info[[cl_key]]$n_children))
      } else {
        widths <-
          rep(hd_info[[cl_key]]$n_children, hd_info[[cl_key]]$n_children)
      }

      ## Normalize and scale widths to length of x-axis
      normalize <- function(x) {
        (nleaves) * (x - 1) / (npoints - 1)
      }
      xleft <- coord[[1]] - normalize(widths) / scale
      xright <- coord[[1]] + normalize(widths) / scale

      ## Top is always parent height, bottom is when the points died
      ## Minor adjustment made if at the root equivalent to plot.dendrogram(edge.root=T)
      if (cl_key == "0") {
        ytop <-
          rep(hd_info[[cl_key]]$eps_birth + 0.0625 * hd_info[[cl_key]]$eps_birth,
              length(widths))
        ybottom <- rep(hd_info[[cl_key]]$eps_death, length(widths))
      } else {
        ytop <- rep(parent_height, length(widths))
        ybottom <-
          c(
            sort(hd_info[[cl_key]]$eps, decreasing = TRUE),
            rep(hd_info[[cl_key]]$eps_death, hd_info[[cl_key]]$n_children)
          )
      }

      ## Draw the rectangles
      rect_color <-
        gcolors[.bincode(length(widths), breaks = col_breaks)]
      graphics::rect(
        xleft = xleft,
        xright = xright,
        ybottom = ybottom,
        ytop = ytop,
        col = rect_color,
        border = NA,
        lwd = 0
      )

      ## Highlight the most 'stable' clusters returned by the default flat cluster extraction
      if (show_flat) {
        salient_cl <- attr(hd_info, "salient_clusters")
        if (as.integer(attr(dend, "label")) %in% salient_cl) {
          x_adjust <-
            (max(xright) - min(xleft)) * 0.10 # 10% left/right border
          y_adjust <-
            (max(ytop) - min(ybottom)) * 0.025 # 2.5% above/below border
          graphics::rect(
            xleft = min(xleft) - x_adjust,
            xright = max(xright) + x_adjust,
            ybottom = min(ybottom) - y_adjust,
            ytop = max(ytop) + y_adjust,
            border = "red",
            lwd = 1
          )
          n_label <-
            names(which(attr(hd_info, "cl_map") == attr(dend, "label")))
          text(
            x = coord[[1]],
            y = min(ybottom),
            pos = 1,
            labels = n_label
          )
        }
      }

      ## Recurse in depth-first-manner
      if (is.leaf(dend)) {
        return(index)
      } else {
        left <-
          eps_dfs(
            dend[[1]],
            index = index + 1,
            parent_height = attr(dend, "height"),
            scale = scale
          )
        right <-
          eps_dfs(
            dend[[2]],
            index = left + 1,
            parent_height = attr(dend, "height"),
            scale = scale
          )
        return(right)
      }
    }

    ## Run the recursive plotting
    plot(
      dend,
      edge.root = TRUE,
      main = "HDBSCAN*",
      ylab = "eps value",
      leaflab = "none",
      ...
    )
    eps_dfs(dend,
            index = 1,
            parent_height = 0,
            scale = scale)
    return(invisible(x))
  }

#' @rdname hdbscan
#' @export
coredist <- function(x, minPts)
  kNNdist(x, k = minPts - 1)

#' @rdname hdbscan
#' @export
mrdist <- function(x, minPts, coredist = NULL) {
  if (inherits(x, "dist")) {
    .check_dist(x)
    x_dist <- x
  } else {
    x_dist <- dist(x,
                   method = "euclidean",
                   diag = FALSE,
                   upper = FALSE)
  }

  if (is.null(coredist)) {
    coredist <- coredist(x, minPts)
  }

  # mr_dist <- as.vector(pmax(as.dist(outer(coredist, coredist, pmax)), x_dist))
  # much faster in C++
  mr_dist <- mrd(x_dist, coredist)
  class(mr_dist) <- "dist"
  attr(mr_dist, "Size") <- attr(x_dist, "Size")
  attr(mr_dist, "Diag") <- FALSE
  attr(mr_dist, "Upper") <- FALSE
  attr(mr_dist, "method") <- paste0("mutual reachability (", attr(x_dist, "method"), ")")
  mr_dist
}