1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
#######################################################################
# dbscan - Density Based Clustering of Applications with Noise
# and Related Algorithms
# Copyright (C) 2015 Michael Hahsler, Matt Piekenbrock
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#' Hierarchical DBSCAN (HDBSCAN)
#'
#' Fast C++ implementation of the HDBSCAN (Hierarchical DBSCAN) and its related
#' algorithms.
#'
#' This fast implementation of HDBSCAN (Campello et al., 2013) computes the
#' hierarchical cluster tree representing density estimates along with the
#' stability-based flat cluster extraction. HDBSCAN essentially computes the
#' hierarchy of all DBSCAN* clusterings, and
#' then uses a stability-based extraction method to find optimal cuts in the
#' hierarchy, thus producing a flat solution.
#'
#' HDBSCAN performs the following steps:
#'
#' 1. Compute mutual reachability distance mrd between points
#' (based on distances and core distances).
#' 2. Use mdr as a distance measure to construct a minimum spanning tree.
#' 3. Prune the tree using stability.
#' 4. Extract the clusters.
#'
#' Additional, related algorithms including the "Global-Local Outlier Score
#' from Hierarchies" (GLOSH; see section 6 of Campello et al., 2015)
#' is available in function [glosh()]
#' and the ability to cluster based on instance-level constraints (see
#' section 5.3 of Campello et al. 2015) are supported. The algorithms only need
#' the parameter `minPts`.
#'
#' Note that `minPts` not only acts as a minimum cluster size to detect,
#' but also as a "smoothing" factor of the density estimates implicitly
#' computed from HDBSCAN.
#'
#' When using the optional parameter `cluster_selection_epsilon`,
#' a combination between DBSCAN* and HDBSCAN* can be achieved
#' (see Malzer & Baum 2020). This means that part of the
#' tree is affected by `cluster_selection_epsilon` as if
#' running DBSCAN* with `eps` = `cluster_selection_epsilon`.
#' The remaining part (on levels above the threshold) is still
#' processed by HDBSCAN*'s stability-based selection algorithm
#' and can therefore return clusters of variable densities.
#' Note that there is not always a remaining part, especially if
#' the parameter value is chosen too large, or if there aren't
#' enough clusters of variable densities. In this case, the result
#' will be equal to DBSCAN*.
# `cluster_selection_epsilon` is especially useful for cases
#' where HDBSCAN* produces too many small clusters that
#' need to be merged, while still being able to extract clusters
#' of variable densities at higher levels.
#'
#' `coredist()`: The core distance is defined for each point as
#' the distance to the `MinPts - 1`'s neighbor.
#' It is a density estimate equivalent to `kNNdist()` with `k = MinPts -1`.
#'
#' `mrdist()`: The mutual reachability distance is defined between two points as
#' `mrd(a, b) = max(coredist(a), coredist(b), dist(a, b))`. This distance metric is used by
#' HDBSCAN. It has the effect of increasing distances in low density areas.
#'
#' `predict()` assigns each new data point to the same cluster as the nearest point
#' if it is not more than that points core distance away. Otherwise the new point
#' is classified as a noise point (i.e., cluster ID 0).
#' @aliases hdbscan HDBSCAN print.hdbscan
#'
#' @family HDBSCAN functions
#' @family clustering functions
#'
#' @param x a data matrix (Euclidean distances are used) or a [dist] object
#' calculated with an arbitrary distance metric.
#' @param minPts integer; Minimum size of clusters. See details.
#' @param cluster_selection_epsilon double; a distance threshold below which
# no clusters should be selected (see Malzer & Baum 2020)
#' @param gen_hdbscan_tree logical; should the robust single linkage tree be
#' explicitly computed (see cluster tree in Chaudhuri et al, 2010).
#' @param gen_simplified_tree logical; should the simplified hierarchy be
#' explicitly computed (see Campello et al, 2013).
#' @param verbose report progress.
#' @param ... additional arguments are passed on.
#' @param scale integer; used to scale condensed tree based on the graphics
#' device. Lower scale results in wider trees.
#' @param gradient character vector; the colors to build the condensed tree
#' coloring with.
#' @param show_flat logical; whether to draw boxes indicating the most stable
#' clusters.
#' @param coredist numeric vector with precomputed core distances (optional).
#'
#' @return `hdbscan()` returns object of class `hdbscan` with the following components:
#' \item{cluster }{A integer vector with cluster assignments. Zero indicates
#' noise points.}
#' \item{minPts }{ value of the `minPts` parameter.}
#' \item{cluster_scores }{The sum of the stability scores for each salient
#' (flat) cluster. Corresponds to cluster IDs given the in `"cluster"` element.
#' }
#' \item{membership_prob }{The probability or individual stability of a
#' point within its clusters. Between 0 and 1.}
#' \item{outlier_scores }{The GLOSH outlier score of each point. }
#' \item{hc }{An [hclust] object of the HDBSCAN hierarchy. }
#'
#' `coredist()` returns a vector with the core distance for each data point.
#'
#' `mrdist()` returns a [dist] object containing pairwise mutual reachability distances.
#'
#' @author Matt Piekenbrock
#' @author Claudia Malzer (added cluster_selection_epsilon)
#'
#' @references
#' Campello RJGB, Moulavi D, Sander J (2013). Density-Based Clustering Based on
#' Hierarchical Density Estimates. Proceedings of the 17th Pacific-Asia
#' Conference on Knowledge Discovery in Databases, PAKDD 2013, _Lecture Notes
#' in Computer Science_ 7819, p. 160.
#' \doi{10.1007/978-3-642-37456-2_14}
#'
#' Campello RJGB, Moulavi D, Zimek A, Sander J (2015). Hierarchical density
#' estimates for data clustering, visualization, and outlier detection.
#' _ACM Transactions on Knowledge Discovery from Data (TKDD),_ 10(5):1-51.
#' \doi{10.1145/2733381}
#'
#' Malzer, C., & Baum, M. (2020). A Hybrid Approach To Hierarchical
#' Density-based Cluster Selection.
#' In 2020 IEEE International Conference on Multisensor Fusion
#' and Integration for Intelligent Systems (MFI), pp. 223-228.
#' \doi{10.1109/MFI49285.2020.9235263}
#' @keywords model clustering hierarchical
#' @examples
#' ## cluster the moons data set with HDBSCAN
#' data(moons)
#'
#' res <- hdbscan(moons, minPts = 5)
#' res
#'
#' plot(res)
#' clplot(moons, res)
#'
#' ## cluster the moons data set with HDBSCAN using Manhattan distances
#' res <- hdbscan(dist(moons, method = "manhattan"), minPts = 5)
#' plot(res)
#' clplot(moons, res)
#'
#' ## Example for HDBSCAN(e) using cluster_selection_epsilon
#' # data with clusters of various densities.
#' X <- data.frame(
#' x = c(
#' 0.08, 0.46, 0.46, 2.95, 3.50, 1.49, 6.89, 6.87, 0.21, 0.15,
#' 0.15, 0.39, 0.80, 0.80, 0.37, 3.63, 0.35, 0.30, 0.64, 0.59, 1.20, 1.22,
#' 1.42, 0.95, 2.70, 6.36, 6.36, 6.36, 6.60, 0.04, 0.71, 0.57, 0.24, 0.24,
#' 0.04, 0.04, 1.35, 0.82, 1.04, 0.62, 0.26, 5.98, 1.67, 1.67, 0.48, 0.15,
#' 6.67, 6.67, 1.20, 0.21, 3.99, 0.12, 0.19, 0.15, 6.96, 0.26, 0.08, 0.30,
#' 1.04, 1.04, 1.04, 0.62, 0.04, 0.04, 0.04, 0.82, 0.82, 1.29, 1.35, 0.46,
#' 0.46, 0.04, 0.04, 5.98, 5.98, 6.87, 0.37, 6.47, 6.47, 6.47, 6.67, 0.30,
#' 1.49, 3.21, 3.21, 0.75, 0.75, 0.46, 0.46, 0.46, 0.46, 3.63, 0.39, 3.65,
#' 4.09, 4.01, 3.36, 1.43, 3.28, 5.94, 6.35, 6.87, 5.60, 5.99, 0.12, 0.00,
#' 0.32, 0.39, 0.00, 1.63, 1.36, 5.67, 5.60, 5.79, 1.10, 2.99, 0.39, 0.18
#' ),
#' y = c(
#' 7.41, 8.01, 8.01, 5.44, 7.11, 7.13, 1.83, 1.83, 8.22, 8.08,
#' 8.08, 7.20, 7.83, 7.83, 8.29, 5.99, 8.32, 8.22, 7.38, 7.69, 8.22, 7.31,
#' 8.25, 8.39, 6.34, 0.16, 0.16, 0.16, 1.66, 7.55, 7.90, 8.18, 8.32, 8.32,
#' 7.97, 7.97, 8.15, 8.43, 7.83, 8.32, 8.29, 1.03, 7.27, 7.27, 8.08, 7.27,
#' 0.79, 0.79, 8.22, 7.73, 6.62, 7.62, 8.39, 8.36, 1.73, 8.29, 8.04, 8.22,
#' 7.83, 7.83, 7.83, 8.32, 8.11, 7.69, 7.55, 7.20, 7.20, 8.01, 8.15, 7.55,
#' 7.55, 7.97, 7.97, 1.03, 1.03, 1.24, 7.20, 0.47, 0.47, 0.47, 0.79, 8.22,
#' 7.13, 6.48, 6.48, 7.10, 7.10, 8.01, 8.01, 8.01, 8.01, 5.99, 8.04, 5.22,
#' 5.82, 5.14, 4.81, 7.62, 5.73, 0.55, 1.31, 0.05, 0.95, 1.59, 7.99, 7.48,
#' 8.38, 7.12, 2.01, 1.40, 0.00, 9.69, 9.47, 9.25, 2.63, 6.89, 0.56, 3.11
#' )
#' )
#'
#' ## HDBSCAN splits one cluster
#' hdb <- hdbscan(X, minPts = 3)
#' plot(hdb, show_flat = TRUE)
#' hullplot(X, hdb, main = "HDBSCAN")
#'
#' ## DBSCAN* marks the least dense cluster as outliers
#' db <- dbscan(X, eps = 1, minPts = 3, borderPoints = FALSE)
#' hullplot(X, db, main = "DBSCAN*")
#'
#' ## HDBSCAN(e) mixes HDBSCAN AND DBSCAN* to find all clusters
#' hdbe <- hdbscan(X, minPts = 3, cluster_selection_epsilon = 1)
#' plot(hdbe, show_flat = TRUE)
#' hullplot(X, hdbe, main = "HDBSCAN(e)")
#' @export
hdbscan <- function(x,
minPts,
cluster_selection_epsilon = 0.0,
gen_hdbscan_tree = FALSE,
gen_simplified_tree = FALSE,
verbose = FALSE) {
if (!inherits(x, "dist") && !.matrixlike(x)) {
stop("hdbscan expects a numeric matrix or a dist object.")
}
## 1. Calculate the mutual reachability between points
if (verbose) {
cat("Calculating core distances...\n")
}
coredist <- coredist(x, minPts)
if (verbose) {
cat("Calculating the mutual reachability matrix distances...\n")
}
mrd <- mrdist(x, minPts, coredist = coredist)
n <- attr(mrd, "Size")
## 2. Construct a minimum spanning tree and convert to RSL representation
if (verbose) {
cat("Constructing the minimum spanning tree...\n")
}
mst <- mst(mrd, n)
hc <- hclustMergeOrder(mst, order(mst[, 3]))
hc$call <- match.call()
## 3. Prune the tree
## Process the hierarchy to retrieve all the necessary info needed by HDBSCAN
if (verbose) {
cat("Tree pruning...\n")
}
res <- computeStability(hc, minPts, compute_glosh = TRUE)
res <- extractUnsupervised(res, cluster_selection_epsilon = cluster_selection_epsilon)
cl <- attr(res, "cluster")
## 4. Extract the clusters
if (verbose) {
cat("Extract clusters...\n")
}
sl <- attr(res, "salient_clusters")
## Generate membership 'probabilities' using core distance as the measure of density
prob <- rep(0, length(cl))
for (cid in sl) {
max_f <- max(coredist[which(cl == cid)])
pr <- (max_f - coredist[which(cl == cid)]) / max_f
prob[cl == cid] <- pr
}
## Match cluster assignments to be incremental, with 0 representing noise
if (any(cl == 0)) {
cluster <- match(cl, c(0, sl)) - 1
} else {
cluster <- match(cl, sl)
}
cl_map <-
structure(sl, names = unique(cluster[hc$order][cluster[hc$order] != 0]))
## Stability scores
## NOTE: These scores represent the stability scores -before- the hierarchy traversal
cluster_scores <-
vapply(sl, function(sl_cid) {
res[[as.character(sl_cid)]]$stability
}, numeric(1L))
names(cluster_scores) <- names(cl_map)
## Return everything HDBSCAN does
attr(res, "cl_map") <-
cl_map # Mapping of hierarchical IDS to 'normalized' incremental ids
out <- structure(
list(
cluster = cluster,
minPts = minPts,
coredist = coredist,
cluster_scores = cluster_scores,
# (Cluster-wide cumulative) Stability Scores
membership_prob = prob,
# Individual point membership probabilities
outlier_scores = attr(res, "glosh"),
# Outlier Scores
hc = hc # Hclust object of MST (can be cut for quick assignments)
),
class = "hdbscan",
hdbscan = res
) # hdbscan attributes contains actual HDBSCAN hierarchy
## The trees don't need to be explicitly computed, but they may be useful if the user wants them
if (gen_hdbscan_tree) {
out$hdbscan_tree <- buildDendrogram(hc)
}
if (gen_simplified_tree) {
out$simplified_tree <- simplifiedTree(res)
}
return(out)
}
#' @rdname hdbscan
#' @export
print.hdbscan <- function(x, ...) {
writeLines(c(
paste0("HDBSCAN clustering for ", nobs(x), " objects."),
paste0("Parameters: minPts = ", x$minPts),
paste0(
"The clustering contains ",
ncluster(x),
" cluster(s) and ",
nnoise(x),
" noise points."
)
))
print(table(x$cluster))
cat("\n")
writeLines(strwrap(paste0("Available fields: ", toString(names(
x
))), exdent = 18))
}
#' @rdname hdbscan
#' @export
plot.hdbscan <-
function(x,
scale = "suggest",
gradient = c("yellow", "red"),
show_flat = FALSE,
...) {
## Logic checks
if (!(scale == "suggest" ||
scale > 0.0)) {
stop("scale parameter must be greater than 0.")
}
## Main information needed
hd_info <- attr(x, "hdbscan")
dend <- x$simplified_tree %||% simplifiedTree(hd_info)
coords <-
node_xy(hd_info, cl_hierarchy = attr(hd_info, "cl_hierarchy"))
## Variables to help setup the scaling of the plotting
nclusters <- length(hd_info)
npoints <- length(x$cluster)
nleaves <-
length(all_children(
attr(hd_info, "cl_hierarchy"),
key = 0,
leaves_only = TRUE
))
scale <-
if (scale == "suggest")
nclusters
else
nclusters / scale
## Color variables
col_breaks <-
seq(0, length(x$cluster) + nclusters, by = nclusters)
gcolors <-
grDevices::colorRampPalette(gradient)(length(col_breaks))
## Depth-first search to recursively plot rectangles
eps_dfs <- function(dend, index, parent_height, scale) {
coord <- coords[index, ]
cl_key <- as.character(attr(dend, "label"))
## widths == number of points in the cluster at each eps it was alive
widths <-
vapply(sort(hd_info[[cl_key]]$eps, decreasing = TRUE), function(eps) {
sum(hd_info[[cl_key]]$eps <= eps)
}, numeric(1L))
if (length(widths) > 0) {
widths <- c(widths + hd_info[[cl_key]]$n_children,
rep(hd_info[[cl_key]]$n_children, hd_info[[cl_key]]$n_children))
} else {
widths <-
rep(hd_info[[cl_key]]$n_children, hd_info[[cl_key]]$n_children)
}
## Normalize and scale widths to length of x-axis
normalize <- function(x) {
(nleaves) * (x - 1) / (npoints - 1)
}
xleft <- coord[[1]] - normalize(widths) / scale
xright <- coord[[1]] + normalize(widths) / scale
## Top is always parent height, bottom is when the points died
## Minor adjustment made if at the root equivalent to plot.dendrogram(edge.root=T)
if (cl_key == "0") {
ytop <-
rep(hd_info[[cl_key]]$eps_birth + 0.0625 * hd_info[[cl_key]]$eps_birth,
length(widths))
ybottom <- rep(hd_info[[cl_key]]$eps_death, length(widths))
} else {
ytop <- rep(parent_height, length(widths))
ybottom <-
c(
sort(hd_info[[cl_key]]$eps, decreasing = TRUE),
rep(hd_info[[cl_key]]$eps_death, hd_info[[cl_key]]$n_children)
)
}
## Draw the rectangles
rect_color <-
gcolors[.bincode(length(widths), breaks = col_breaks)]
graphics::rect(
xleft = xleft,
xright = xright,
ybottom = ybottom,
ytop = ytop,
col = rect_color,
border = NA,
lwd = 0
)
## Highlight the most 'stable' clusters returned by the default flat cluster extraction
if (show_flat) {
salient_cl <- attr(hd_info, "salient_clusters")
if (as.integer(attr(dend, "label")) %in% salient_cl) {
x_adjust <-
(max(xright) - min(xleft)) * 0.10 # 10% left/right border
y_adjust <-
(max(ytop) - min(ybottom)) * 0.025 # 2.5% above/below border
graphics::rect(
xleft = min(xleft) - x_adjust,
xright = max(xright) + x_adjust,
ybottom = min(ybottom) - y_adjust,
ytop = max(ytop) + y_adjust,
border = "red",
lwd = 1
)
n_label <-
names(which(attr(hd_info, "cl_map") == attr(dend, "label")))
text(
x = coord[[1]],
y = min(ybottom),
pos = 1,
labels = n_label
)
}
}
## Recurse in depth-first-manner
if (is.leaf(dend)) {
return(index)
} else {
left <-
eps_dfs(
dend[[1]],
index = index + 1,
parent_height = attr(dend, "height"),
scale = scale
)
right <-
eps_dfs(
dend[[2]],
index = left + 1,
parent_height = attr(dend, "height"),
scale = scale
)
return(right)
}
}
## Run the recursive plotting
plot(
dend,
edge.root = TRUE,
main = "HDBSCAN*",
ylab = "eps value",
leaflab = "none",
...
)
eps_dfs(dend,
index = 1,
parent_height = 0,
scale = scale)
return(invisible(x))
}
#' @rdname hdbscan
#' @export
coredist <- function(x, minPts)
kNNdist(x, k = minPts - 1)
#' @rdname hdbscan
#' @export
mrdist <- function(x, minPts, coredist = NULL) {
if (inherits(x, "dist")) {
.check_dist(x)
x_dist <- x
} else {
x_dist <- dist(x,
method = "euclidean",
diag = FALSE,
upper = FALSE)
}
if (is.null(coredist)) {
coredist <- coredist(x, minPts)
}
# mr_dist <- as.vector(pmax(as.dist(outer(coredist, coredist, pmax)), x_dist))
# much faster in C++
mr_dist <- mrd(x_dist, coredist)
class(mr_dist) <- "dist"
attr(mr_dist, "Size") <- attr(x_dist, "Size")
attr(mr_dist, "Diag") <- FALSE
attr(mr_dist, "Upper") <- FALSE
attr(mr_dist, "method") <- paste0("mutual reachability (", attr(x_dist, "method"), ")")
mr_dist
}
|