1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
#######################################################################
# dbscan - Density Based Clustering of Applications with Noise
# and Related Algorithms
# Copyright (C) 2015 Michael Hahsler
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#' Plot Clusters
#'
#' This function produces a two-dimensional scatter plot of data points
#' and colors the data points according to a supplied clustering. Noise points
#' are marked as `x`. `hullplot()` also adds convex hulls to clusters.
#'
#' @name hullplot
#' @aliases hullplot clplot
#'
#' @param x a data matrix. If more than 2 columns are provided, then the data
#' is plotted using the first two principal components.
#' @param cl a clustering. Either a numeric cluster assignment vector or a
#' clustering object (a list with an element named `cluster`).
#' @param col colors used for clusters. Defaults to the standard palette. The
#' first color (default is black) is used for noise/unassigned points (cluster
#' id 0).
#' @param pch a vector of plotting characters. By default `o` is used for
#' points and `x` for noise points.
#' @param cex expansion factor for symbols.
#' @param hull_lwd,hull_lty line width and line type used for the convex hull.
#' @param main main title.
#' @param solid,alpha draw filled polygons instead of just lines for the convex
#' hulls? alpha controls the level of alpha shading.
#' @param ... additional arguments passed on to plot.
#' @author Michael Hahsler
#' @keywords plot clustering
#' @examples
#' set.seed(2)
#' n <- 400
#'
#' x <- cbind(
#' x = runif(4, 0, 1) + rnorm(n, sd = 0.1),
#' y = runif(4, 0, 1) + rnorm(n, sd = 0.1)
#' )
#' cl <- rep(1:4, time = 100)
#'
#'
#' ### original data with true clustering
#' clplot(x, cl, main = "True clusters")
#' hullplot(x, cl, main = "True clusters")
#' ### use different symbols
#' hullplot(x, cl, main = "True clusters", pch = cl)
#' ### just the hulls
#' hullplot(x, cl, main = "True clusters", pch = NA)
#' ### a version suitable for b/w printing)
#' hullplot(x, cl, main = "True clusters", solid = FALSE,
#' col = c("grey", "black"), pch = cl)
#'
#'
#' ### run some clustering algorithms and plot the results
#' db <- dbscan(x, eps = .07, minPts = 10)
#' clplot(x, db, main = "DBSCAN")
#' hullplot(x, db, main = "DBSCAN")
#'
#' op <- optics(x, eps = 10, minPts = 10)
#' opDBSCAN <- extractDBSCAN(op, eps_cl = .07)
#' hullplot(x, opDBSCAN, main = "OPTICS")
#'
#' opXi <- extractXi(op, xi = 0.05)
#' hullplot(x, opXi, main = "OPTICSXi")
#'
#' # Extract minimal 'flat' clusters only
#' opXi <- extractXi(op, xi = 0.05, minimum = TRUE)
#' hullplot(x, opXi, main = "OPTICSXi")
#'
#' km <- kmeans(x, centers = 4)
#' hullplot(x, km, main = "k-means")
#'
#' hc <- cutree(hclust(dist(x)), k = 4)
#' hullplot(x, hc, main = "Hierarchical Clustering")
#' @export
hullplot <- function(x,
cl,
col = NULL,
pch = NULL,
cex = 0.5,
hull_lwd = 1,
hull_lty = 1,
solid = TRUE,
alpha = .2,
main = "Convex Cluster Hulls",
...) {
### handle d>2 by using PCA
if (ncol(x) > 2)
x <- prcomp(x)$x
### extract clustering (keep hierarchical xICSXi structure)
if (inherits(cl, "xics") || "clusters_xi" %in% names(cl)) {
clusters_xi <- cl$clusters_xi
cl_order <- cl$order
} else
clusters_xi <- NULL
if (is.list(cl))
cl <- cl$cluster
if (!is.numeric(cl))
stop("Could not get cluster assignment vector from cl.")
#if(is.null(col)) col <- c("#000000FF", rainbow(n=max(cl)))
if (is.null(col))
col <- palette()
# Note: We use the first color for noise points
if (length(col) == 1L)
col <- c(col, col)
col_noise <- col[1]
col <- col[-1]
if (max(cl) > length(col)) {
warning("Not enough colors. Some colors will be reused.")
col <- rep(col, length.out = max(cl))
}
# mark noise points
pch <- pch %||% ifelse(cl == 0L, 4L, 1L)
plot(x[, 1:2],
col = c(col_noise, col)[cl + 1L],
pch = pch,
cex = cex,
main = main,
...)
col_poly <- adjustcolor(col, alpha.f = alpha)
border <- col
## no border?
if (is.null(hull_lwd) || is.na(hull_lwd) || hull_lwd == 0) {
hull_lwd <- 1
border <- NA
}
if (inherits(cl, "xics") || "clusters_xi" %in% names(cl)) {
## This is necessary for larger datasets: Ensure largest is plotted first
clusters_xi <-
clusters_xi[order(-(clusters_xi$end - clusters_xi$start)), ] # Order by size (descending)
ci_order <- clusters_xi$cluster_id
} else {
ci_order <- 1:max(cl)
}
for (i in seq_along(ci_order)) {
### use all the points for xICSXi's hierarchical structure
if (is.null(clusters_xi)) {
d <- x[cl == i, , drop = FALSE]
} else {
d <-
x[cl_order[clusters_xi$start[i]:clusters_xi$end[i]], , drop = FALSE]
}
ch <- chull(d)
ch <- c(ch, ch[1])
if (!solid) {
lines(d[ch, ],
col = border[ci_order[i]],
lwd = hull_lwd,
lty = hull_lty)
} else {
polygon(
d[ch, ],
col = col_poly[ci_order[i]],
lwd = hull_lwd,
lty = hull_lty,
border = border[ci_order[i]]
)
}
}
}
#' @rdname hullplot
#' @export
clplot <- function(x,
cl,
col = NULL,
pch = NULL,
cex = 0.5,
main = "Cluster Plot",
...)
hullplot(x, cl = cl, col = col, pch = pch, cex = cex, main = main,
solid = FALSE, hull_lwd = NA)
|