1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
#######################################################################
# dbscan - Density Based Clustering of Applications with Noise
# and Related Algorithms
# Copyright (C) 2015 Michael Hahsler
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#' Find the k Nearest Neighbors
#'
#' This function uses a kd-tree to find all k nearest neighbors in a data
#' matrix (including distances) fast.
#'
#' **Ties:** If the kth and the (k+1)th nearest neighbor are tied, then the
#' neighbor found first is returned and the other one is ignored.
#'
#' **Self-matches:** If no query is specified, then self-matches are
#' removed.
#'
#' Details on the search parameters:
#'
#' * `search` controls if
#' a kd-tree or linear search (both implemented in the ANN library; see Mount
#' and Arya, 2010). Note, that these implementations cannot handle NAs.
#' `search = "dist"` precomputes Euclidean distances first using R. NAs are
#' handled, but the resulting distance matrix cannot contain NAs. To use other
#' distance measures, a precomputed distance matrix can be provided as `x`
#' (`search` is ignored).
#'
#' * `bucketSize` and `splitRule` influence how the kd-tree is
#' built. `approx` uses the approximate nearest neighbor search
#' implemented in ANN. All nearest neighbors up to a distance of
#' `eps / (1 + approx)` will be considered and all with a distance
#' greater than `eps` will not be considered. The other points might be
#' considered. Note that this results in some actual nearest neighbors being
#' omitted leading to spurious clusters and noise points. However, the
#' algorithm will enjoy a significant speedup. For more details see Mount and
#' Arya (2010).
#'
#' @aliases kNN knn
#' @family NN functions
#'
#' @param x a data matrix, a [dist] object or a [kNN] object.
#' @param k number of neighbors to find.
#' @param query a data matrix with the points to query. If query is not
#' specified, the NN for all the points in `x` is returned. If query is
#' specified then `x` needs to be a data matrix.
#' @param search nearest neighbor search strategy (one of `"kdtree"`, `"linear"` or
#' `"dist"`).
#' @param sort sort the neighbors by distance? Note that some search methods
#' already sort the results. Sorting is expensive and `sort = FALSE` may
#' be much faster for some search methods. kNN objects can be sorted using
#' `sort()`.
#' @param bucketSize max size of the kd-tree leafs.
#' @param splitRule rule to split the kd-tree. One of `"STD"`, `"MIDPT"`, `"FAIR"`,
#' `"SL_MIDPT"`, `"SL_FAIR"` or `"SUGGEST"` (SL stands for sliding). `"SUGGEST"` uses
#' ANNs best guess.
#' @param approx use approximate nearest neighbors. All NN up to a distance of
#' a factor of `1 + approx` eps may be used. Some actual NN may be omitted
#' leading to spurious clusters and noise points. However, the algorithm will
#' enjoy a significant speedup.
#' @param decreasing sort in decreasing order?
#' @param ... further arguments
#'
#' @return An object of class `kNN` (subclass of [NN]) containing a
#' list with the following components:
#' \item{dist }{a matrix with distances. }
#' \item{id }{a matrix with `ids`. }
#' \item{k }{number `k` used. }
#' \item{metric }{ used distance metric. }
#'
#' @author Michael Hahsler
#' @references David M. Mount and Sunil Arya (2010). ANN: A Library for
#' Approximate Nearest Neighbor Searching,
#' \url{http://www.cs.umd.edu/~mount/ANN/}.
#' @keywords model
#' @examples
#' data(iris)
#' x <- iris[, -5]
#'
#' # Example 1: finding kNN for all points in a data matrix (using a kd-tree)
#' nn <- kNN(x, k = 5)
#' nn
#'
#' # explore neighborhood of point 10
#' i <- 10
#' nn$id[i,]
#' plot(x, col = ifelse(seq_len(nrow(iris)) %in% nn$id[i,], "red", "black"))
#'
#' # visualize the 5 nearest neighbors
#' plot(nn, x)
#'
#' # visualize a reduced 2-NN graph
#' plot(kNN(nn, k = 2), x)
#'
#' # Example 2: find kNN for query points
#' q <- x[c(1,100),]
#' nn <- kNN(x, k = 10, query = q)
#'
#' plot(nn, x, col = "grey")
#' points(q, pch = 3, lwd = 2)
#'
#' # Example 3: find kNN using distances
#' d <- dist(x, method = "manhattan")
#' nn <- kNN(d, k = 1)
#' plot(nn, x)
#' @export
kNN <-
function(x,
k,
query = NULL,
sort = TRUE,
search = "kdtree",
bucketSize = 10,
splitRule = "suggest",
approx = 0) {
if (inherits(x, "kNN")) {
if (x$k < k)
stop("kNN in x has not enough nearest neighbors.")
if (!x$sort)
x <- sort(x)
x$id <- x$id[, 1:k]
if (!is.null(x$dist))
x$dist <- x$dist[, 1:k]
if (!is.null(x$shared))
x$dist <- x$shared[, 1:k]
x$k <- k
return(x)
}
search <- .parse_search(search)
splitRule <- .parse_splitRule(splitRule)
k <- as.integer(k)
if (k < 1)
stop("Illegal k: needs to be k>=1!")
### dist search
if (search == 3 && !inherits(x, "dist")) {
if (.matrixlike(x))
x <- dist(x)
else
stop("x needs to be a matrix to calculate distances")
}
### get kNN from a dist object
if (inherits(x, "dist")) {
if (!is.null(query))
stop("query can only be used if x contains a data matrix.")
if (anyNA(x))
stop("distances cannot be NAs for kNN!")
return(dist_to_kNN(x, k = k))
}
## make sure x is numeric
if (!.matrixlike(x))
stop("x needs to be a matrix to calculate distances")
x <- as.matrix(x)
if (storage.mode(x) == "integer")
storage.mode(x) <- "double"
if (storage.mode(x) != "double")
stop("x has to be a numeric matrix.")
if (!is.null(query)) {
query <- as.matrix(query)
if (storage.mode(query) == "integer")
storage.mode(query) <- "double"
if (storage.mode(query) != "double")
stop("query has to be NULL or a numeric matrix.")
if (ncol(x) != ncol(query))
stop("x and query need to have the same number of columns!")
}
if (k >= nrow(x))
stop("Not enough neighbors in data set!")
if (anyNA(x))
stop("data/distances cannot contain NAs for kNN (with kd-tree)!")
## returns NO self matches
if (!is.null(query)) {
ret <- kNN_query_int(
as.matrix(x),
as.matrix(query),
as.integer(k),
as.integer(search),
as.integer(bucketSize),
as.integer(splitRule),
as.double(approx)
)
dimnames(ret$dist) <- list(rownames(query), 1:k)
dimnames(ret$id) <- list(rownames(query), 1:k)
} else {
ret <- kNN_int(
as.matrix(x),
as.integer(k),
as.integer(search),
as.integer(bucketSize),
as.integer(splitRule),
as.double(approx)
)
dimnames(ret$dist) <- list(rownames(x), 1:k)
dimnames(ret$id) <- list(rownames(x), 1:k)
}
class(ret) <- c("kNN", "NN")
### ANN already returns them sorted (by dist but not by ID)
if (sort)
ret <- sort(ret)
ret$metric <- "euclidean"
ret
}
# make sure we have a lower-triangle representation w/o diagonal
.check_dist <- function(x) {
if (!inherits(x, "dist"))
stop("x needs to be a dist object")
# cluster::dissimilarity does not have Diag or Upper attributes, but is a lower triangle
# representation
if (inherits(x, "dissimilarity"))
return(TRUE)
# check that dist objects have diag = FALSE, upper = FALSE
if (attr(x, "Diag") || attr(x, "Upper"))
stop("x needs to be a dist object with attributes Diag and Upper set to FALSE. Use as.dist(x, diag = FALSE, upper = FALSE) fist.")
}
dist_to_kNN <- function(x, k) {
.check_dist(x)
n <- attr(x, "Size")
id <- structure(integer(n * k), dim = c(n, k))
d <- matrix(NA_real_, nrow = n, ncol = k)
for (i in seq_len(n)) {
### Inf -> no self-matches
y <- dist_row(x, i, self_val = Inf)
o <- order(y, decreasing = FALSE)
o <- o[seq_len(k)]
id[i, ] <- o
d[i, ] <- y[o]
}
dimnames(id) <- list(labels(x), seq_len(k))
dimnames(d) <- list(labels(x), seq_len(k))
ret <-
structure(list(
dist = d,
id = id,
k = k,
sort = TRUE,
metric = attr(x, "method")
),
class = c("kNN", "NN"))
return(ret)
}
#' @rdname kNN
#' @export
sort.kNN <- function(x, decreasing = FALSE, ...) {
if (isTRUE(x$sort))
return(x)
if (is.null(x$dist))
stop("Unable to sort. Distances are missing.")
if (ncol(x$id) < 2) {
x$sort <- TRUE
return(x)
}
## sort first by dist and break ties using id
o <- vapply(
seq_len(nrow(x$dist)),
function(i) order(x$dist[i, ], x$id[i, ], decreasing = decreasing),
integer(ncol(x$id))
)
for (i in seq_len(ncol(o))) {
x$dist[i, ] <- x$dist[i, ][o[, i]]
x$id[i, ] <- x$id[i, ][o[, i]]
}
x$sort <- TRUE
x
}
#' @rdname kNN
#' @export
adjacencylist.kNN <- function(x, ...)
lapply(
seq_len(nrow(x$id)),
FUN = function(i) {
## filter NAs
tmp <- x$id[i, ]
tmp[!is.na(tmp)]
}
)
#' @rdname kNN
#' @export
print.kNN <- function(x, ...) {
cat("k-nearest neighbors for ",
nrow(x$id),
" objects (k=",
x$k,
").",
"\n",
sep = "")
cat("Distance metric:", x$metric, "\n")
cat("\nAvailable fields: ", toString(names(x)), "\n", sep = "")
}
# Convert names to integers for C++
.parse_search <- function(search) {
search <- pmatch(toupper(search), c("KDTREE", "LINEAR", "DIST"))
if (is.na(search))
stop("Unknown NN search type!")
search
}
.parse_splitRule <- function(splitRule) {
splitRule <- pmatch(toupper(splitRule), .ANNsplitRule) - 1L
if (is.na(splitRule))
stop("Unknown splitRule!")
splitRule
}
|