1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
|
\name{dataf.sim.1.CFF07}
\alias{dataf.sim.1.CFF07}
\title{
Model 1 from Cuevas et al. (2007)
}
\description{
Model 1 from Cuevas et al. (2007)
Processes: \cr
X(t) = m_0(t) + e(t), m_0(t) = 30*(1-t)*t^1.2 \cr
Y(t) = m_1(t) + e(t), m_1(t) = 30*(1-t)^1.2*t \cr
e(t): Gaussian with mean = 0, cov(X(s), X(t)) = 0.2*exp(-abs(s - t)/0.3)\cr
the processes are discretized at \code{numDiscrets} equally distant points on [0, 1]. The functions
are smooth and differ in mean only, which makes the classification task rather simple.
}
\usage{
dataf.sim.1.CFF07(numTrain = 100, numTest = 50, numDiscrets = 51, plot = FALSE)
}
\arguments{
\item{numTrain}{
number of objects in the training sample
}
\item{numTest}{
number of objects in the test sample
}
\item{numDiscrets}{
number of points for each object
}
\item{plot}{
if TRUE the training sample is plotted
}
}
\format{
A data strusture containing \code{$learn} and \code{$test} functional data.
The functional data are given as data structures.
\describe{
\item{\code{dataf}}{
The functional data as a list of objects. Each object is characterized by two coordinates.
\describe{
\item{\code{args}}{a numeric vector}
\item{\code{vals}}{a numeric vector}
}
}
\item{\code{labels}}{The classes of the objects: 0 for X(t), 1 for Y(t)}
}
}
\source{
Cuevas, A., Febrero, M. and Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics 22 481-496.
}
\seealso{
\code{\link{dataf.*}} for other functional data sets
\code{\link{plot.functional}} for building plots of functional data
}
\examples{
## load the dataset
dataf = dataf.sim.1.CFF07(numTrain = 100, numTest = 50, numDiscrets = 51)
learn = dataf$learn
test = dataf$test
## view the classes
unique(learn$labels)
## access the 5th point of the 2nd object
learn$dataf[[2]]$args[5]
learn$dataf[[2]]$vals[5]
\dontrun{
## plot the data
plot(learn)
plot(test)
## or
dataf = dataf.sim.1.CFF07(numTrain = 100, numTest = 50, numDiscrets = 51, plot = TRUE)
}
}
\keyword{datasets}
\keyword{functional}
|