File: dataf.sim.1.CFF07.Rd

package info (click to toggle)
r-cran-ddalpha 1.3.11-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,656 kB
  • sloc: cpp: 3,556; fortran: 886; ansic: 159; makefile: 2
file content (84 lines) | stat: -rw-r--r-- 2,227 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
\name{dataf.sim.1.CFF07}
\alias{dataf.sim.1.CFF07}
\title{
Model 1 from Cuevas et al. (2007)
}
\description{
Model 1 from Cuevas et al. (2007)

Processes: \cr
X(t) = m_0(t) + e(t), m_0(t) = 30*(1-t)*t^1.2 \cr
Y(t) = m_1(t) + e(t), m_1(t) = 30*(1-t)^1.2*t \cr
e(t): Gaussian with mean = 0, cov(X(s), X(t)) = 0.2*exp(-abs(s - t)/0.3)\cr
the processes are discretized at \code{numDiscrets} equally distant points on [0, 1]. The functions
are smooth and differ in mean only, which makes the classification task rather simple.
}
\usage{
dataf.sim.1.CFF07(numTrain = 100, numTest = 50, numDiscrets = 51, plot = FALSE)
}

\arguments{
  \item{numTrain}{
number of objects in the training sample
  }
  \item{numTest}{
number of objects in the test sample
  }
  \item{numDiscrets}{
number of points for each object
  }
  \item{plot}{
if TRUE the training sample is plotted
  }
}

\format{
  A data strusture containing \code{$learn} and \code{$test} functional data.
  The functional data are given as data structures.
  \describe{
    \item{\code{dataf}}{
      The functional data as a list of objects. Each object is characterized by two coordinates.
      \describe{
        \item{\code{args}}{a numeric vector}
        \item{\code{vals}}{a numeric vector}
       }
    }
    \item{\code{labels}}{The classes of the objects: 0 for X(t), 1 for Y(t)}
  }
}

\source{

Cuevas, A., Febrero, M. and Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics 22 481-496.

}
\seealso{
\code{\link{dataf.*}} for other functional data sets

\code{\link{plot.functional}} for building plots of functional data
}
\examples{
## load the dataset
dataf = dataf.sim.1.CFF07(numTrain = 100, numTest = 50, numDiscrets = 51)
learn = dataf$learn
test = dataf$test

## view the classes
unique(learn$labels)

## access the 5th point of the 2nd object
learn$dataf[[2]]$args[5]
learn$dataf[[2]]$vals[5]

\dontrun{
## plot the data
plot(learn)
plot(test)

## or
dataf = dataf.sim.1.CFF07(numTrain = 100, numTest = 50, numDiscrets = 51, plot = TRUE)
}

}
\keyword{datasets}
\keyword{functional}