1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
|
\name{ddalpha.getErrorRateCV}
\alias{ddalpha.getErrorRateCV}
\title{
Test DD-Classifier
}
\description{
Performs a cross-validation procedure over the given data.
On each step every \code{numchunks} observation is removed from the data, the DD-classifier is trained on these data and tested on the removed observations.
}
\usage{
ddalpha.getErrorRateCV (data, numchunks = 10, ...)
}
\arguments{
\item{data}{
Matrix containing training sample where each of \eqn{n} rows is one object of the training sample where first \eqn{d} entries are inputs and the last entry is output (class label).
}
\item{numchunks}{
number of subsets of testing data. Equals to the number of times the classifier is trained.
}
\item{\dots}{
additional parameters passed to \code{\link{ddalpha.train}}
}
}
\value{
\item{errors}{
the part of incorrectly classified data
}
\item{time}{
the mean training time
}
\item{time_sd}{
the standard deviation of training time
}
}
\seealso{
\code{\link{ddalpha.train}} to train the DD\eqn{\alpha}-classifier,
\code{\link{ddalpha.classify}} for classification using DD\eqn{\alpha}-classifier,
\code{\link{ddalpha.test}} to test the DD-classifier on particular learning and testing data,
\code{\link{ddalpha.getErrorRatePart}} to perform a benchmark study of the DD-classifier on particular data.
}
\examples{
# Generate a bivariate normal location-shift classification task
# containing 200 training objects and 200 to test with
class1 <- mvrnorm(150, c(0,0),
matrix(c(1,1,1,4), nrow = 2, ncol = 2, byrow = TRUE))
class2 <- mvrnorm(150, c(2,2),
matrix(c(1,1,1,4), nrow = 2, ncol = 2, byrow = TRUE))
propertyVars <- c(1:2)
classVar <- 3
data <- rbind(cbind(class1, rep(1, 150)), cbind(class2, rep(2, 150)))
# Train 1st DDalpha-classifier (default settings)
# and get the classification error rate
stat <- ddalpha.getErrorRateCV(data, numchunks = 5)
cat("1. Classification error rate (defaults): ",
stat$error, ".\n", sep = "")
# Train 2nd DDalpha-classifier (zonoid depth, maximum Mahalanobis
# depth classifier with defaults as outsider treatment)
# and get the classification error rate
stat2 <- ddalpha.getErrorRateCV(data, depth = "zonoid",
outsider.methods = "depth.Mahalanobis")
cat("2. Classification error rate (depth.Mahalanobis): ",
stat2$error, ".\n", sep = "")
}
% Add one or more standard keywords, see file 'KEYWORDS' in the
% R documentation directory.
\keyword{ benchmark }
|