File: ddalphaf.classify.Rd

package info (click to toggle)
r-cran-ddalpha 1.3.11-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,656 kB
  • sloc: cpp: 3,556; fortran: 886; ansic: 159; makefile: 2
file content (65 lines) | stat: -rw-r--r-- 1,793 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
\name{ddalphaf.classify}
\alias{ddalphaf.classify}
\alias{predict.ddalphaf}
\title{
Classify using Functional DD-Classifier
}
\description{
Classifies data using the functional DD-classifier.
}
\usage{
ddalphaf.classify(ddalphaf, objectsf, subset, ...)

\method{predict}{ddalphaf}(object, objectsf, subset, ...)
}
\arguments{
  \item{ddalphaf, object}{
Functional DD-classifier (obtained by \code{\link{ddalphaf.train}}).
}
  \item{objectsf}{list containing lists (functions) of two vectors of equal length, named "args" and "vals": arguments sorted in ascending order and corresponding them values respectively
}
  \item{subset}{
an optional vector specifying a subset of observations to be classified.
}
  \item{\dots}{
additional parameters, passed to the classifier, selected with parameter \code{classifier.type} in \code{\link{ddalphaf.train}}.
}
}



\value{
List containing class labels.
}
\references{
Mosler, K. and Mozharovskyi, P. (2017). Fast DD-classification of functional data. \emph{Statistical Papers} \bold{58} 1055--1089.

Mozharovskyi, P. (2015). \emph{Contributions to Depth-based Classification and Computation of the Tukey Depth}. Verlag Dr. Kovac (Hamburg).
}
\seealso{
\code{\link{ddalphaf.train}} to train the functional DD\eqn{\alpha}-classifier.
}
\examples{

\dontrun{
## load the Growth dataset
dataf = dataf.growth()

learn = c(head(dataf$dataf, 49), tail(dataf$dataf, 34))
labels= c(head(dataf$labels, 49), tail(dataf$labels, 34)) 
test  = tail(head(dataf$dataf, 59), 10)    # elements 50:59. 5 girls, 5 boys

c = ddalphaf.train (learn, labels, classifier.type = "ddalpha")

classified = ddalphaf.classify(c, test)

print(unlist(classified))

}
}

\keyword{ functional }
\keyword{ robust }
\keyword{ multivariate }
\keyword{ nonparametric }
\keyword{ classif }