1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
|
\name{ddalphaf.getErrorRatePart}
\alias{ddalphaf.getErrorRatePart}
\title{
Test Functional DD-Classifier
}
\description{
Performs a benchmark procedure by partitioning the given data.
On each of \code{times} steps \code{size} observations are removed from the data, the functional DD-classifier is trained on these data and tested on the removed observations.
}
\usage{
ddalphaf.getErrorRatePart(dataf, labels, size = 0.3, times = 10,
disc.type = c("LS", "comp"), ...)
}
\arguments{
\item{dataf}{
list containing lists (functions) of two vectors of equal length, named "args" and "vals": arguments sorted in ascending order and corresponding them values respectively
}
\item{labels}{
list of output labels of the functional observations
}
\item{size}{
the excluded sequences size. Either an integer between \eqn{1} and \eqn{n}, or a fraction of data between \eqn{0} and \eqn{1}.
}
\item{times}{
the number of times the classifier is trained.
}
\item{disc.type}{
type of the used discretization scheme. "LS" for \code{\link{ddalphaf.train}}, "comp" for for \code{\link{compclassf.train}}
}
\item{\dots}{
additional parameters passed to \code{\link{ddalphaf.train}}
}
}
\value{
\item{errors}{
the part of incorrectly classified data (mean)
}
\item{errors_sd}{
the standard deviation of errors
}
\item{errors_vec}{
vector of errors
}
\item{time}{
the mean training time
}
\item{time_sd}{
the standard deviation of training time
}
}
\seealso{
\code{\link{ddalphaf.train}} to train the functional DD\eqn{\alpha}-classifier,
\code{\link{ddalphaf.classify}} for classification using functional DD\eqn{\alpha}-classifier,
\code{\link{ddalphaf.test}} to test the functional DD-classifier on particular learning and testing data,
\code{\link{ddalphaf.getErrorRateCV}} to get error rate of the functional DD-classifier on particular data.
}
\examples{
# load the fdata
df = dataf.growth()
stat <- ddalphaf.getErrorRatePart(dataf = df$dataf, labels = df$labels,
size = 0.3, times = 5,
adc.args = list(instance = "avr",
numFcn = 2,
numDer = 2))
cat("Classification error rate: ", stat$errors, ".\n", sep = "")
}
% Add one or more standard keywords, see file 'KEYWORDS' in the
% R documentation directory.
\keyword{ benchmark }
|