File: depth.space..Rd

package info (click to toggle)
r-cran-ddalpha 1.3.11-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,656 kB
  • sloc: cpp: 3,556; fortran: 886; ansic: 159; makefile: 2
file content (80 lines) | stat: -rw-r--r-- 2,382 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
\name{depth.space.}
\alias{depth.space.}

\title{
Calculate Depth Space using the Given Depth
}
\description{
Calculates the representation of the training classes in depth space.

The detailed descriptions are found in the corresponding topics.
}
\usage{
depth.space.(data, cardinalities, notion, ...)

## Mahalanobis depth
# depth.space.Mahalanobis(data, cardinalities, mah.estimate = "moment", mah.parMcd = 0.75)

## projection depth
# depth.space.projection(data, cardinalities, method = "random", num.directions = 1000)

## Tukey depth
# depth.space.halfspace(data, cardinalities, exact, alg, num.directions = 1000)

## spatial depth
# depth.space.spatial(data, cardinalities)

## zonoid depth
# depth.space.zonoid(data, cardinalities)

# Potential
# depth.space.potential(data, cardinalities, pretransform = "NMom", 
#            kernel = "GKernel", kernel.bandwidth = NULL, mah.parMcd = 0.75)
}

\arguments{
  \item{data}{
Matrix containing training sample where each row is a \eqn{d}-dimensional object, and objects of each class are kept together so that the matrix can be thought of as containing blocks of objects representing classes.
}
  \item{cardinalities}{
Numerical vector of cardinalities of each class in \code{data}, each entry corresponds to one class.
}
  \item{notion}{
The name of the depth notion (shall also work with \code{\link{Custom Methods}}).
}
  \item{\dots}{
Additional parameters passed to the depth functions.
}
}

\value{
Matrix of objects, each object (row) is represented via its depths (columns) w.r.t. each of the classes of the training sample; order of the classes in columns corresponds to the one in the argument \code{cardinalities}.
}

\seealso{

\code{\link{depth.space.Mahalanobis}}

\code{\link{depth.space.projection}}

\code{\link{depth.space.halfspace}}

\code{\link{depth.space.spatial}}

\code{\link{depth.space.zonoid}}

}
\examples{
# Generate a bivariate normal location-shift classification task
# containing 20 training objects
class1 <- mvrnorm(10, c(0,0), 
                  matrix(c(1,1,1,4), nrow = 2, ncol = 2, byrow = TRUE))
class2 <- mvrnorm(10, c(2,2), 
                  matrix(c(1,1,1,4), nrow = 2, ncol = 2, byrow = TRUE))
data <- rbind(class1, class2)
# Get depth space using zonoid depth
depth.space.(data, c(10, 10), notion = "zonoid")
}
\keyword{ robust }
\keyword{ multivariate }
\keyword{ nonparametric }