File: depth.space.simplicialVolume.Rd

package info (click to toggle)
r-cran-ddalpha 1.3.11-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,656 kB
  • sloc: cpp: 3,556; fortran: 886; ansic: 159; makefile: 2
file content (67 lines) | stat: -rw-r--r-- 3,457 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
\name{depth.space.simplicialVolume}
\alias{depth.space.simplicialVolume}
\title{
Calculate Depth Space using Simplicial Volume Depth
}
\description{
Calculates the representation of the training classes in depth space using simplicial volume depth.
}
\usage{
depth.space.simplicialVolume(data, cardinalities, exact = F, k = 0.05, 
                             mah.estimate = "moment", mah.parMcd = 0.75, seed = 0)
}
\arguments{
  \item{data}{
Matrix containing training sample where each row is a \eqn{d}-dimensional object, and objects of each class are kept together so that the matrix can be thought of as containing blocks of objects representing classes.
}
  \item{cardinalities}{
Numerical vector of cardinalities of each class in \code{data}, each entry corresponds to one class.
}
  \item{exact}{
\code{exact=F} (by default) implies the approximative algorithm, considering \code{k} simplices, \code{exact=T} implies the exact algorithm.
}
  \item{k}{
Number (\eqn{k>1}) or portion (if \eqn{0<k<1}) of simplices that are considered if \code{exact=F}. If \eqn{k>1}, then the algorithmic complexity is polynomial in \eqn{d} but is independent of the number of observations in \code{data}, given \eqn{k}. If \eqn{0<k<1}, then the algorithmic complexity is exponential in the number of observations in \code{data}, but the calculation precision stays approximately the same.
}
  \item{mah.estimate}{
A character string specifying affine-invariance adjustment; can be \code{"none"}, \code{"moment"} or \code{"MCD"}, determining whether no affine-invariance adjustemt or moment or Minimum Covariance Determinant (MCD) (see \code{\link{covMcd}}) estimates of the covariance are used. By default \code{"moment"} is used.
}
  \item{mah.parMcd}{
The value of the argument \code{alpha} for the function \code{\link{covMcd}}; is used when \code{mah.estimate =} \code{"MCD"}.
}
  \item{seed}{
The random seed. The default value \code{seed=0} makes no changes.
}
}
\details{
The depth representation is calculated in the same way as in \code{\link{depth.simplicialVolume}}, see References below for more information and details.
}
\value{
Matrix of objects, each object (row) is represented via its depths (columns) w.r.t. each of the classes of the training sample; order of the classes in columns corresponds to the one in the argument \code{cardinalities}.
}
\references{
Oja, H. (1983). Descriptive statistics for multivariate distributions. \emph{Statistics & Probability Letters} \bold{1} 327--332.

Zuo, Y.J. and Serfling, R. (2000). General notions of statistical depth function. \emph{The Annals of Statistics} \bold{28} 461--482.
}
\seealso{
\code{\link{ddalpha.train}} and \code{\link{ddalpha.classify}} for application, \code{\link{depth.simplicialVolume}} for calculation of simplicial depth.
}
\examples{
# Generate a bivariate normal location-shift classification task
# containing 20 training objects
class1 <- mvrnorm(10, c(0,0), 
                  matrix(c(1,1,1,4), nrow = 2, ncol = 2, byrow = TRUE))
class2 <- mvrnorm(10, c(2,2), 
                  matrix(c(1,1,1,4), nrow = 2, ncol = 2, byrow = TRUE))
data <- rbind(class1, class2)
# Get depth space using Oja depth
depth.space.simplicialVolume(data, c(10, 10))

data <- getdata("hemophilia")
cardinalities = c(sum(data$gr == "normal"), sum(data$gr == "carrier"))
depth.space.simplicialVolume(data[,1:2], cardinalities)
}
\keyword{ robust }
\keyword{ multivariate }
\keyword{ nonparametric }