File: getdata.Rd

package info (click to toggle)
r-cran-ddalpha 1.3.11-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,656 kB
  • sloc: cpp: 3,556; fortran: 886; ansic: 159; makefile: 2
file content (203 lines) | stat: -rw-r--r-- 5,960 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
\name{getdata}
\alias{getdata}
\alias{data}

\alias{baby}
\alias{banknoten}
\alias{biomed}
\alias{bloodtransfusion}
\alias{breast_cancer_wisconsin}
\alias{bupa}
\alias{chemdiab_1vs2}
\alias{chemdiab_1vs3}
\alias{chemdiab_2vs3}
\alias{cloud}
\alias{crabB_MvsF}
\alias{crabF_BvsO}
\alias{crabM_BvsO}
\alias{crabO_MvsF}
\alias{crab_BvsO}
\alias{crab_MvsF}
\alias{cricket_CvsP}
\alias{diabetes}
\alias{ecoli_cpvsim}
\alias{ecoli_cpvspp}
\alias{ecoli_imvspp}
\alias{gemsen_MvsF}
\alias{glass}
\alias{groessen_MvsF}
\alias{haberman}
\alias{heart}
\alias{hemophilia}
\alias{indian_liver_patient_1vs2}
\alias{indian_liver_patient_FvsM}
\alias{iris_setosavsversicolor}
\alias{iris_setosavsvirginica}
\alias{iris_versicolorvsvirginica}
\alias{irish_ed_MvsF}
\alias{kidney}
\alias{pima}
\alias{plasma_retinol_MvsF}
\alias{segmentation}
\alias{socmob_IvsNI}
\alias{socmob_WvsB}
\alias{tae}
\alias{tennis_MvsF}
\alias{tips_DvsN}
\alias{tips_MvsF}
\alias{uscrime_SvsN}
\alias{vertebral_column}
\alias{veteran_lung_cancer}
\alias{vowel_MvsF}
\alias{wine_1vs2}
\alias{wine_1vs3}
\alias{wine_2vs3}

\title{
Data for Classification
}
\description{
50 multivariate data sets for binary classification. For more details refer {\url{http://www.wisostat.uni-koeln.de/de/forschung/software-und-daten/data-for-classification/}}

The \code{getdata} function gets the data set from the package, and returns it. The dataset itself does not appear in the global environment and the existing variables with the same name remain unchanged.
}
\usage{
# load the data set
# data(name)

# load the data set by name
# data(list = "name")

# load the data set by name to a variable
# getdata("name")

}
\arguments{
  \item{name}{
the data set name. 
}
}
\format{
  A data frame with \code{n} observations on the \code{d} variables. The last \code{d+1} column is the class label.
  \describe{
    \item{\code{x[,1:d]}}{numeric values}
    \item{\code{x[,d+1]}}{the numeric class label (0 or 1) or (1 or 2)}
  }
}
\details{
The package contains data sets used in the joint project of the University of Cologne and the Hochschule Merseburg "Classifying real-world data with the DDalpha-procedure". Comprehensive description of the methodology, and experimental settings and results of the study are presented in the work:

Mozharovskyi, P., Mosler, K., and Lange, T. (2015). Classifying real-world data with the DD\eqn{\alpha}-procedure. \emph{Advances in Data Analysis and Classification} \bold{9} 287--314.

For a more complete explanation of the technique and further experiments see:
Lange, T., Mosler, K., and Mozharovskyi, P. (2014). Fast nonparametric classification based on data depth. \emph{Statistical Papers} \bold{55} 49--69.

50 binary classification tasks have been obtained from partitioning 33 freely accessible data sets. Multiclass problems were reasonably split into binary classification problems, some of the data set were slightly processed by removing objects or attributes and selecting prevailing classes. Each data set is provided with a (short) description and brief descriptive statistics. The name reflects the origination of the data. A letter after the name is a property filter, letters (also their combinations) in brackets separated by "vs" are the classes opposed. The letters (combinations or words) stand for labels of classes (names of properties) and are intuitive. Each description contains a link to the original data.

The data have been collected as open source data in January 2013. Owners of the package decline any responsibility regarding their correctness or consequences of their usage. If you publish material based on these data, please quote the original source. Special requests regarding citations are found on data set's web page.

}
\references{
Lange, T., Mosler, K., and Mozharovskyi, P. (2014). Fast nonparametric classification based on data depth. \emph{Statistical Papers} \bold{55} 49--69.

Mozharovskyi, P., Mosler, K., and Lange, T. (2015). Classifying real-world data with the DD\eqn{\alpha}-procedure. \emph{Advances in Data Analysis and Classification} \bold{9} 287--314.

The general list of sources consists of:

UCI Machine Learning Repository {\url{http://archive.ics.uci.edu/ml}}\cr
R-packages {\url{https://CRAN.R-project.org/}} \cr
{\url{http://stat.cmu.edu}} \cr
{\url{http://stat.ethz.ch/Teaching/Datasets}} \cr
{\url{http://www.stats.ox.ac.uk/pub/PRNN}} 
}

\seealso{
\code{\link[utils:data]{utils:data}}
}

\note{
List of the datasets:

baby\cr
banknoten\cr
biomed\cr
bloodtransfusion\cr
breast_cancer_wisconsin\cr
bupa\cr
chemdiab_1vs2\cr
chemdiab_1vs3\cr
chemdiab_2vs3\cr
cloud\cr
crabB_MvsF\cr
crabF_BvsO\cr
crabM_BvsO\cr
crabO_MvsF\cr
crab_BvsO\cr
crab_MvsF\cr
cricket_CvsP\cr
diabetes\cr
ecoli_cpvsim\cr
ecoli_cpvspp\cr
ecoli_imvspp\cr
gemsen_MvsF\cr
glass\cr
groessen_MvsF\cr
haberman\cr
heart\cr
hemophilia\cr
indian_liver_patient_1vs2\cr
indian_liver_patient_FvsM\cr
iris_setosavsversicolor\cr
iris_setosavsvirginica\cr
iris_versicolorvsvirginica\cr
irish_ed_MvsF\cr
kidney\cr
pima\cr
plasma_retinol_MvsF\cr
segmentation\cr
socmob_IvsNI\cr
socmob_WvsB\cr
tae\cr
tennis_MvsF\cr
tips_DvsN\cr
tips_MvsF\cr
uscrime_SvsN\cr
vertebral_column\cr
veteran_lung_cancer\cr
vowel_MvsF\cr
wine_1vs2\cr
wine_1vs3\cr
wine_2vs3\cr


Also functional data sets can be loaded:

geneexp\cr
growth\cr
medflies\cr
population\cr
population2010\cr
tecator

}


\examples{
# load a dataset using data()
data(hemophilia)
data(list = "hemophilia")
rm(hemophilia)

# load data set using getdata()
hemophilia = "This is some existing object called 'hemophilia'. It remains unchanged"
d = getdata("hemophilia")
head(d)
print(hemophilia)

#get the list of all data sets
names = data(package = "ddalpha")$results[,3]

}


\keyword{datasets}