File: depth.fd.f

package info (click to toggle)
r-cran-ddalpha 1.3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,636 kB
  • sloc: cpp: 3,455; fortran: 886; ansic: 155; makefile: 2
file content (1232 lines) | stat: -rw-r--r-- 37,907 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
c----------------------------------------------------------------------
c     Stanislav Nagy
c     nagy at karlin.mff.cuni.cz
c     27/06/2016
c
c     Fortran implementation of functional depths and kernel smoothing
c     - Nagy, Ferraty: Depth for Noisy Random Functions
c     - Nagy, Gijbels, Hlubinka: Depth-Based Recognition of Shape 
c           Outlying Functions
c
c----------------------------------------------------------------------

c----------------------------------------------------------------------
c     kernel smoothing of a set of functions
c----------------------------------------------------------------------

      SUBROUTINE KERNSM(T,X,G,M,N,H,K,R)
c     kernel smoothing of a single function
c     T vector of observation points (M)
c     X vector of observed values (M)
c     G grid to evaluate (N)
c     H bandwidth
c     K kernel code to use, see below
c     R resulting estimate (N)

      integer M,N,K
      integer I,J
      double precision T(M),X(M),G(N),R(N),H
      double precision DEN,P
      
      DO 10 I=1,N
            R(I)=0.0
            DEN = 0.0
            DO 5 J=1,M
                  CALL KERN((G(I)-T(J))/H,P,K)
                  R(I) = R(I) + X(J)*P
                  DEN = DEN + P
5           CONTINUE
            IF (DEN.GT.0) THEN
                  R(I) = R(I)/DEN
               ELSE
                  R(I) = 10**6
            ENDIF      
10    CONTINUE
      RETURN
      END
      
c----------------------------------------------------------------------

      SUBROUTINE KERN(T,R,K)
c     kernel functions
      
      double precision T,R
      INTEGER K
      
      IF(K.EQ.1) THEN
c     uniform kernel
            IF (ABS(T).LE.1.0) THEN
                  R = .5
                  ELSE
                  R = 0.0
            ENDIF
      ENDIF
      IF(K.EQ.2) THEN
c     triangular kernel
            IF (ABS(T).LE.1.0) THEN
                  R = 1-ABS(T)
                  ELSE
                  R = 0.0
            ENDIF
      ENDIF
      IF(K.EQ.3) THEN
c     Epanechnikov kernel
            IF (ABS(T).LE.1.0) THEN
                  R = 3.0/4.0*(1.0-T**2.0)
                  ELSE
                  R = 0.0
            ENDIF
      ENDIF
      IF(K.EQ.4) THEN
c     biweight kernel
            IF (ABS(T).LE.1.0) THEN
                  R = 15.0/16.0*(1.0-T**2.0)**2
                  ELSE
                  R = 0.0
            ENDIF
      ENDIF
      IF(K.EQ.5) THEN
c     triweight kernel
            IF (ABS(T).LE.1.0) THEN
                  R = 35.0/32.0*(1.0-T**2.0)**3
                  ELSE
                  R = 0.0
            ENDIF
      ENDIF
      IF(K.EQ.6) THEN
c     Gaussian kernel
            R = (2*4.D0*DATAN(1.D0))**(-0.5)*EXP(-0.5*T**2)
      ENDIF
      RETURN
      END
  
c----------------------------------------------------------------------
      
      SUBROUTINE CVKERNSM(T,X,G,M,N,H,NH,KER,TRE,XRE,TNRE,XNRE,NR,NT,R)
c     as in KERNSM, but with automated BW seletction
c     from the vector H(NH)
c     KER kernel code
c     TRE,XRE vectors from T,X for omission for the CV (NR*NT)
c     TNRE,XNRE supplementary vectors to TRE,NRE ((M-NR)*NT)
c     NR no of random elements for each H choice
c     NT no of random trials for each H choice
c     for each H we choose NR random points from X
c     compute the kernel smoother without these points
c     and evaluate the error. repeat NT times, then average
c     the errors to get the CV estimate

      integer M,N,NH,NR,NT,KER
      integer I,J,K,OM(NR),L
      double precision T(M),X(M),G(N),R(N),H(NH),TRE(NR*NT),XRE(NR*NT)
      double precision TNRE((M-NR)*NT),XNRE((M-NR)*NT)
      double precision TOM(NR),XOM(NR),TNOM(M-NR),XNOM(M-NR)
      double precision CV(NH),SR(NR),MCV
      
      DO 30 I=1,NH
            CV(I) = 0.0
            DO 20 J=1,NT
                  DO 5 K=1,NR
                        TOM(K) = TRE((J-1)*NR+K)
                        XOM(K) = XRE((J-1)*NR+K)
5                 CONTINUE
                  DO 6 K=1,(M-NR)
                        TNOM(K) = TNRE((J-1)*(M-NR)+K)
                        XNOM(K) = XNRE((J-1)*(M-NR)+K)
6                 CONTINUE
            CALL KERNSM(TNOM,XNOM,TOM,(M-NR),NR,H(I),KER,SR)
                  DO 10 K=1,NR
                  CV(I) = CV(I) + (XOM(K)-SR(K))**2
10                CONTINUE
20          CONTINUE            
30    CONTINUE
      K = 0
      MCV = CV(1)+1
      DO 40 I=1,NH
            IF (CV(I).LT.MCV) THEN
                  K = I
                  MCV = CV(I)
            ENDIF
40    CONTINUE
      CALL KERNSM(T,X,G,M,N,H(K),KER,R)
      RETURN
      END
      
c----------------------------------------------------------------------
c     fucntional data depth computation      
c----------------------------------------------------------------------

      SUBROUTINE funD1(A,B,M,N,D,funSDEP,funHDEP,fIsdep,fIhdep,IAsdep,
     +IAhdep)
c     univariate integrated depth
       
      INTEGER N,M,D
      INTEGER IAsdep(M),IAhdep(M)
      double precision A(M*D),B(N*D),funSDEP(M),funHDEP(M),
     +fIsdep(M),fIhdep(M) 
      double precision BH(N)
      double precision hSDEP,hHDEP
      INTEGER I,J,K

c     initializing
      DO 5 I=1,M
            funSDEP(I) = 0.0
            funHDEP(I) = 0.0
            fISDEP(I) = 2.0
            fIHDEP(I) = 2.0 
            IAsdep(I) = 0
            IAhdep(I) = 0
5     CONTINUE
c     essential loop, computing 1D depths at each point
      DO 30 I=1,D
            DO 10 K=1,N
                  BH(K) = B((I-1)*N+K)
10          CONTINUE
            DO 20 J=1,M
                  hSDEP = 0.0
                  hHDEP = 0.0
                  CALL fD1(A((I-1)*M+J),N,BH,hSDEP,hHDEP)
c     integrated depth evaluation
                  funSDEP(J) = funSDEP(J) + hSDEP
                  funHDEP(J) = funHDEP(J) + hHDEP
c     counting the area of the smallest depth for each function
                  IF (hSDEP.EQ.fISDEP(J)) THEN
                        IAsdep(J) = IAsdep(J)+1
                  ELSEIF (hSDEP.LT.fISDEP(J)) THEN 
                        IAsdep(J) = 1
                  ENDIF
                  IF (hHDEP.EQ.fIHDEP(J)) THEN
                        IAhdep(J) = IAhdep(J)+1
                  ELSEIF (hHDEP.LT.fIHDEP(J)) THEN 
                        IAhdep(J) = 1
                  ENDIF 
c     infimal depth evaluation                 
                  fISDEP(J) = min(fISDEP(J),hSDEP)
                  fIHDEP(J) = min(fIHDEP(J),hHDEP)
20          CONTINUE
30    CONTINUE
c     dividing the resulting depths by number of points d
      DO 40 I=1,M
            funSDEP(I) = funSDEP(I)/(D+0.0)
            funHDEP(I) = funHDEP(I)/(D+0.0)
40    CONTINUE
      RETURN
      END 
      
c----------------------------------------------------------------------

      SUBROUTINE fD1(U,N,X,SDEP,HDEP)
c     computes 1D simplicial and halfspace depth of U wrt X of size N
c     used in the univariate integrated depth

      double precision U,X(N),SDEP,HDEP
      INTEGER N,RB,RA,I
      
      RB = 0
      RA = 0
      DO 10 I=1,N
            IF (U .LE. X(I)) THEN 
                  RB = RB + 1
                  ENDIF
            IF (U .GE. X(I)) THEN 
                  RA = RA + 1
                  ENDIF
10    CONTINUE     
      HDEP = min(RA+0.0,RB+0.0)/(N+0.0)
      SDEP = (RA+0.0)*(RB+0.0)/(K(N,2)+0.0)
      RETURN
      END
      
c----------------------------------------------------------------------

      INTEGER FUNCTION K(M,J)
c     combination number (m choose j)

      integer m,j
      IF (M.LT.J) THEN
          K=0
      ELSE
          IF (J.EQ.1) K=M
          IF (J.EQ.2) K=(M*(M-1))/2
          IF (J.EQ.3) K=(M*(M-1)*(M-2))/6
      ENDIF
      RETURN
      END
      
c----------------------------------------------------------------------

      SUBROUTINE metrl2(A,B,M,N,D,METR)
c     computes a fast approximation of the L2 metric between A and B
c     supporting functions on regular grids only
c     used in the h-mode depth 
        
      INTEGER N,M,D
      double precision A(M*D),B(N*D),METR(M*N)
      INTEGER I,J,K

      DO 15 I=1,M
            DO 10 J=1,N
            METR((J-1)*M+I) = 0.0
                  DO 5 K=1,D
                  METR((J-1)*M+I) = METR((J-1)*M+I) + (A((K-1)*M+I)-
     +B((K-1)*N+J))**2
5                 CONTINUE
            METR((J-1)*M+I) = sqrt(METR((J-1)*M+I) - 
     +((A((0)*M+I)-B((0)*N+J))**2+(A((D-1)*M+I)-B((D-1)*N+J))**2)
     +/(2.0))
10          CONTINUE
15    CONTINUE
      RETURN
      END 
      
c----------------------------------------------------------------------

      SUBROUTINE metrC(A,B,M,N,D,METR)
c     computes a fast approximation of the C metric between A and B
c     supporting functions on regular grids only
c     used in the h-mode depth 
        
      INTEGER N,M,D
      double precision A(M*D),B(N*D),METR(M*N)
      INTEGER I,J,K

      DO 15 I=1,M
            DO 10 J=1,N
            METR((J-1)*M+I) = 0.0
                  DO 5 K=1,D
                  METR((J-1)*M+I) = MAX(METR((J-1)*M+I),A((K-1)*M+I)-
     +B((K-1)*N+J))
            METR((J-1)*M+I) = MAX(METR((J-1)*M+I),-A((K-1)*M+I)+
     +B((K-1)*N+J))
5                 CONTINUE
10          CONTINUE
15    CONTINUE
      RETURN
      END 

c----------------------------------------------------------------------

      double precision FUNCTION MAX(A,B)
c     maximum of two numbers A and B

      double precision A,B
      
      IF (A.LE.B) THEN
            MAX = B
      ELSE
            MAX = A
      ENDIF
      RETURN
      END 

      double precision FUNCTION AdjLPindicator(EVAL,J,B,V)
c     adjusted band depth core function, smoothing (exp(-u)), L2 metric
c     b is a vector of length eval
c     v is a matrix j*eval

      INTEGER EVAL, J
      double precision B(EVAL), V(J*EVAL)
      double precision MINI, MAXI, DIST, POWER
      INTEGER I, II

      DIST = 0.0
      POWER = 1.0
c     power in exp(-power*dist) for weighting
      DO 10 I=1,EVAL 
            MINI = V((I-1)*J+1)
            MAXI = V((I-1)*J+1)
            DO 5 II=1,J
            IF (MINI.GT.V((I-1)*J+II)) THEN
                  MINI = V((I-1)*J+II)
           ENDIF
            IF (MAXI.LT.V((I-1)*J+II)) THEN
                  MAXI = V((I-1)*J+II)
            ENDIF
5           CONTINUE
            IF  ((B(I).GE.MINI).AND.(B(I).LE.MAXI)) THEN
                  DIST = DIST + 0.0
            ELSE
                  IF(B(I).GT.MAXI) THEN
                  DIST = DIST + (B(I)-MAXI)**2
                  ENDIF
                  IF(B(I).LT.MINI) THEN
                  DIST = DIST + (MINI-B(I))**2
                  ENDIF
            ENDIF
10    CONTINUE
      DIST = DIST/(EVAL+0.0)
      DIST = EXP(-POWER*DIST)
      AdjLPindicator = DIST
      RETURN
      END

      SUBROUTINE AdjLP(EVAL,J,M,KOMB,COM,B,V,DJ)
c     adjusted band depth function, smoothing (exp(-u)), L2 metric
c     eval     no of time points for each functions
c     J        order of the depth
c     m        sample size
c     komb     m choose J number
c     com      vector of all the combinations of J elements from m
c     b        functional values of the x function, length eval
c     v        matrix of sample funct. values, dimension [m x eval]

      INTEGER EVAL,J,M,KOMB,COM(KOMB*J)
      double precision B(EVAL),V(M*EVAL),DJ
      double precision VPOM(J*EVAL)
      INTEGER C,I,II
      double precision ADJLPINDICATOR

      DJ = 0.0
      DO 10 C=1,KOMB
            DO 5 I=1,J
                  DO 3 II=1,EVAL
                        VPOM((II-1)*J+I) = V((II-1)*M+COM((C-1)*J+I))
3                 CONTINUE
5           CONTINUE 
            DJ = DJ + AdjLPindicator(EVAL,J,B,VPOM)     
10    CONTINUE
      DJ = DJ/(KOMB+0.0)
      RETURN
      END

c----------------------------------------------------------------------
      
      double precision FUNCTION AdjCindicator(EVAL,J,B,V)
c     adjusted band depth core function, smoothing (exp(-u)), C metric
c     b is a vector of length eval
c     v is a matrix j*eval

      INTEGER EVAL, J
      double precision B(EVAL), V(J*EVAL)
      double precision MINI, MAXI, DIST, POWER, MAX
      INTEGER I, II

      DIST = 0.0
      POWER = 1.0
c     power in exp(-power*dist) for weighting
      DO 10 I=1,EVAL 
            MINI = V((I-1)*J+1)
            MAXI = V((I-1)*J+1)
            DO 5 II=1,J
            IF (MINI.GT.V((I-1)*J+II)) THEN
                  MINI = V((I-1)*J+II)
           ENDIF
            IF (MAXI.LT.V((I-1)*J+II)) THEN
                  MAXI = V((I-1)*J+II)
            ENDIF
5           CONTINUE
            IF  ((B(I).GE.MINI).AND.(B(I).LE.MAXI)) THEN
                  DIST = DIST + 0.0
            ELSE
                  IF(B(I).GT.MAXI) THEN
                  DIST = MAX(DIST,(B(I)-MAXI))
                  ENDIF
                  IF(B(I).LT.MINI) THEN
                  DIST = MAX(DIST,(MINI-B(I)))
                  ENDIF
            ENDIF
10    CONTINUE
      DIST = EXP(-POWER*DIST)
      AdjCindicator = DIST
      RETURN
      END

      SUBROUTINE AdjC(EVAL,J,M,KOMB,COM,B,V,DJ)
c     adjusted band depth function, smoothing (exp(-u)), C metric
c     eval     no of time points for each functions
c     J        order of the depth
c     m        sample size
c     komb     m choose J number
c     com      vector of all the combinations of J elements from m
c     b        functional values of the x function, length eval
c     v        matrix of sample funct. values, dimension [m x eval]

      INTEGER EVAL,J,M,KOMB,COM(KOMB*J)
      double precision B(EVAL),V(M*EVAL),DJ
      double precision VPOM(J*EVAL)
      INTEGER C,I,II
      double precision ADJCINDICATOR

      DJ = 0.0
      DO 10 C=1,KOMB
            DO 5 I=1,J
                  DO 3 II=1,EVAL
                        VPOM((II-1)*J+I) = V((II-1)*M+COM((C-1)*J+I))
3                 CONTINUE
5           CONTINUE 
            DJ = DJ + AdjCindicator(EVAL,J,B,VPOM)     
10    CONTINUE
      DJ = DJ/(KOMB+0.0)
      RETURN
      END
      
c-----------------------------------
c     DiffDepth.f
c-----------------------------------

c-------------------------------------
c     first Difference Depth for 1D functions
c     for 1d functions, halfspace and simplicial depth
c-------------------------------------

      SUBROUTINE DiffD(A,B,M,N,D,REP,RN,funSDEP,funHDEP,funSDEPm,
     +funHDEPm,PSDEP,PHDEP,IAsdep,IAhdep)

c     using fdepth computes 2dimensional diff depth of functions in A
c     with respect to the functions in B
c     M     size of functions in A
c     N     size of functions in B
c     D     dimensionality of functions
c     REP   is the number of simulations to approximate the real value
c           of depth, if set to 0 full comutation is made
c     RN    random numbers, arrray of randoms from 1:D of size 2*REP
c     funSDEPm    DiffDepth when taking infimum of projected depths
c     funSDEP     DiffDepth when taking integral of projected depths
c     P.DEP pointwise depth, depth at each point of domain x domain
c     P.DEP is computed only if M=1, for simplicity
        
      INTEGER N,M,D,REP
      INTEGER IAsdep(M),IAhdep(M)
      double precision A(M*D),B(N*D),funSDEP(M),funHDEP(M),PSDEP(D*D),
     +PHDEP(D*D)
      double precision funSDEPm(M),funHDEPm(M),B1H(N),B2H(N)
      double precision hSDEP,hHDEP
      double precision hALPHA(N)
      INTEGER hF(N),I,J,K,RN(2*REP)

      DO 5 I=1,M
            funSDEP(I) = 0.0
            funHDEP(I) = 0.0
            funSDEPm(I) = 2.0
            funHDEPm(I) = 2.0
            IAsdep(I) = 0
            IAhdep(I) = 0
5     CONTINUE
c     initialization for easier recognition of unfilled elements
      IF (M.EQ.1) THEN 
            DO 8 I=1,(D*D)
                  PSDEP(I) = -1.0
                  PHDEP(I) = -1.0
8                 CONTINUE
            ENDIF
c     essential loop, computing 2D depths at each point
      IF (REP.EQ.0) THEN
c     if we compute the complete, non-approximated depth
      DO 30 I=1,D
            DO 25 J=(I+1),D
c     not taking into account diagonal elements, there is 0 depth
                  DO 10 K=1,N
                  B1H(K) = B((I-1)*N+K)
                  B2H(K) = B((J-1)*N+K)
10                CONTINUE
                  DO 20 L=1,M
                        hSDEP = 0.0
                        hHDEP = 0.0
                        hALPHA(1) = N+0.0
                        hF(1) = N
      CALL fD2(A((I-1)*M+L),A((J-1)*M+L),N,B1H,B2H,hALPHA,hF,
     +hSDEP,hHDEP)
                        funSDEP(L) = funSDEP(L) + hSDEP
                        funHDEP(L) = funHDEP(L) + hHDEP
c     counting the area of the smallest depth for each function
                        IF (hSDEP.EQ.funSDEPm(L)) THEN
                              IAsdep(L) = IAsdep(L)+1
                        ELSEIF (hSDEP.LT.funSDEPm(L)) THEN 
                              IAsdep(L) = 1
                        ENDIF
                        IF (hHDEP.EQ.funHDEPm(L)) THEN
                              IAhdep(L) = IAhdep(L)+1
                        ELSEIF (hHDEP.LT.funHDEPm(L)) THEN 
                              IAhdep(L) = 1
                        ENDIF 
                        funSDEPm(L) = min(funSDEPm(L),hSDEP)
                        funHDEPm(L) = min(funHDEPm(L),hHDEP)
                        IF (M.EQ.1) THEN
                              PSDEP((I-1)*D+J) = hSDEP
                              PHDEP((I-1)*D+J) = hHDEP
                              ENDIF
20                CONTINUE
25          CONTINUE
30    CONTINUE
c       dividing the resulting depths by number of points d
c     for infimal area, the result is *2+D because the diagonal 
c     has zero depth by default, and only the lower triangle 
c     of the matrix is actually computed
      DO 40 I=1,M
            funSDEP(I) = 2.0*funSDEP(I)/(D*(D-1.0))
c     diagonals are always zero, do not count into the sum 
c ((D+0.0)*(D+1.0)/2+0.0-D)
            funHDEP(I) = 2.0*funHDEP(I)/(D*(D-1.0))
c ((D+0.0)*(D+1.0)/2+0.0-D)
            IAhdep(I) = IAhdep(I)*2+D
            IAsdep(I) = IAsdep(I)*2+D
40    CONTINUE
      ELSE 
c     else of if(REP.EQ.0), that is if we approximate
      DO 70 I=1,REP
c     going through random elements
                  DO 50 K=1,N
                  B1H(K) = B((RN(2*I-1)-1)*N+K)
                  B2H(K) = B((RN(2*I)-1)*N+K)
50                CONTINUE
                  DO 60 L=1,M
                        hSDEP = 0.0
                        hHDEP = 0.0
                        hALPHA(1) = N+0.0
                        hF(1) = N
      CALL fD2(A((RN(2*I-1)-1)*M+L),A((RN(2*I)-1)*M+L),N,
     +B1H,B2H,hALPHA,hF,hSDEP,hHDEP)
                        funSDEP(L) = funSDEP(L) + hSDEP
                        funHDEP(L) = funHDEP(L) + hHDEP
c     counting the area of the smallest depth for each function
                        IF (hSDEP.EQ.funSDEPm(L)) THEN
                              IAsdep(L) = IAsdep(L)+1
                        ELSEIF (hSDEP.LT.funSDEPm(L)) THEN 
                              IAsdep(L) = 1
                        ENDIF
                        IF (hHDEP.EQ.funHDEPm(L)) THEN
                              IAhdep(L) = IAhdep(L)+1
                        ELSEIF (hHDEP.LT.funHDEPm(L)) THEN 
                              IAhdep(L) = 1
                        ENDIF 
                        funSDEPm(L) = min(funSDEPm(L),hSDEP)
                        funHDEPm(L) = min(funHDEPm(L),hHDEP)
                        IF (M.EQ.1) THEN
                              PSDEP((RN(2*I-1)-1)*D+RN(2*I)) = hSDEP
                              PHDEP((RN(2*I-1)-1)*D+RN(2*I)) = hHDEP
                              ENDIF
60                CONTINUE
70    CONTINUE
      DO 80 I=1,M
            funSDEP(I) = funSDEP(I)/(REP+0.0) 
            funHDEP(I) = funHDEP(I)/(REP+0.0)
80    CONTINUE      
      ENDIF
      RETURN
      END 
      
c----------------------------------------------------------------------

      SUBROUTINE fD2(U,V,N,X,Y,ALPHA,F,SDEP,HDEP)

c        Rousseuw, P.J., and Ruts, I. (1996), AS 307 : Bivariate location
c        depth, Applied Statistics (JRRSS-C), vol.45, 516-526

      double precision U,V,X(n),Y(n),ALPHA(n)
      double precision P,P2,EPS,D,XU,YU,ANGLE,ALPHK,BETAK,SDEP,HDEP
      INTEGER F(N),GI
      integer n,nums,numh,nt,i,nn,nu,ja,jb,nn2,nbad,nf,j,ki,k
      NUMS=0
      NUMH=0
      SDEP=0.0
      HDEP=0.0
      IF (N.LT.1) RETURN
      P=ACOS(-1.0)
      P2=P*2.0
      EPS=0.00000001
      NT=0
C
C  Construct the array ALPHA.
C
      DO 10 I=1,N
          D=SQRT((X(I)-U)*(X(I)-U)+(Y(I)-V)*(Y(I)-V))
          IF (D.LE.EPS) THEN
              NT=NT+1
          ELSE
              XU=(X(I)-U)/D
              YU=(Y(I)-V)/D
              IF (ABS(XU).GT.ABS(YU)) THEN
                  IF (X(I).GE.U) THEN
                      ALPHA(I-NT)=ASIN(YU)
                      IF(ALPHA(I-NT).LT.0.0) THEN
                          ALPHA(I-NT)=P2+ALPHA(I-NT)
                      ENDIF
                  ELSE
                      ALPHA(I-NT)=P-ASIN(YU)
                  ENDIF
              ELSE
                  IF (Y(I).GE.V) THEN
                      ALPHA(I-NT)=ACOS(XU)
                  ELSE
                      ALPHA(I-NT)=P2-ACOS(XU)
                  ENDIF
              ENDIF
              IF (ALPHA(I-NT).GE.(P2-EPS)) ALPHA(I-NT)=0.0
          ENDIF
  10  CONTINUE
      NN=N-NT
      IF (NN.LE.1) GOTO 60
C
C  Sort the array ALPHA.
C
      CALL SORT(ALPHA,NN)
C
C  Check whether theta=(U,V) lies outside the data cloud.
C
      ANGLE=ALPHA(1)-ALPHA(NN)+P2
      DO 20 I=2,NN
          ANGLE=MAX(ANGLE,(ALPHA(I)-ALPHA(I-1)))
  20  CONTINUE
      IF (ANGLE.GT.(P+EPS)) GOTO 60
C
C  Make smallest alpha equal to zero,
C  and compute NU = number of alpha < pi.
C
      ANGLE=ALPHA(1)
      NU=0
      DO 30 I=1,NN
          ALPHA(I)=ALPHA(I)-ANGLE
          IF (ALPHA(I).LT.(P-EPS)) NU=NU+1
  30  CONTINUE
      IF (NU.GE.NN) GOTO 60
C
C  Mergesort the alpha with their antipodal angles beta,
C  and at the same time update I, F(I), and NBAD.
C
      JA=1
      JB=1
      ALPHK=ALPHA(1)
      BETAK=ALPHA(NU+1)-P
      NN2=NN*2
      NBAD=0
      I=NU
      NF=NN
      DO 40 J=1,NN2
          IF ((ALPHK+EPS).LT.BETAK) THEN
              NF=NF+1
              IF (JA.LT.NN) THEN
                  JA=JA+1
                  ALPHK=ALPHA(JA)
              ELSE
                  ALPHK=P2+1.0
              ENDIF
          ELSE
              I=I+1
              IF (I.EQ.(NN+1)) THEN
                  I=1
                  NF=NF-NN
              ENDIF
              F(I)=NF
              NBAD=NBAD+K((NF-I),2)
              IF (JB.LT.NN) THEN
                  JB=JB+1
                  IF ((JB+NU).LE.NN) THEN
                      BETAK=ALPHA(JB+NU)-P
                  ELSE
                      BETAK=ALPHA(JB+NU-NN)+P
                  ENDIF
              ELSE
                  BETAK=P2+1.0
              ENDIF
          ENDIF
  40  CONTINUE
      NUMS=K(NN,3)-NBAD
C
C  Computation of NUMH for halfspace depth.
C
      GI=0
      JA=1
      ANGLE=ALPHA(1)
      NUMH=MIN(F(1),(NN-F(1)))
      DO 50 I=2,NN
          IF(ALPHA(I).LE.(ANGLE+EPS)) THEN
              JA=JA+1
          ELSE
              GI=GI+JA
              JA=1
              ANGLE=ALPHA(I)
          ENDIF
          KI=F(I)-GI
          NUMH=MIN(NUMH,MIN(KI,(NN-KI)))
   50 CONTINUE
C
C  Adjust for the number NT of data points equal to theta:
C
  60  NUMS=NUMS+K(NT,1)*K(NN,2)+K(NT,2)*K(NN,1)+K(NT,3)
      IF (N.GE.3) SDEP=(NUMS+0.0)/(K(N,3)+0.0)
      NUMH=NUMH+NT
      HDEP=(NUMH+0.0)/(N+0.0)
      RETURN
      END
c----------------------------------------------------------------------


c      INTEGER FUNCTION K(M,J)
c      integer m,j
c      IF (M.LT.J) THEN
c          K=0
c      ELSE
c          IF (J.EQ.1) K=M
c          IF (J.EQ.2) K=(M*(M-1))/2
c          IF (J.EQ.3) K=(M*(M-1)*(M-2))/6
c      ENDIF
c      RETURN
c      END

c----------------------------------------------------------------------

      SUBROUTINE SORT(B,N)
C  Sorts an array B (of length N<=1000) in O(NlogN) time.

      double precision B(N),x(n)
      integer q(n),i,n
      
      call indexx(n,b,q)
      
      do 10 i=1,n
        x(i)=b(i)
10    continue
 
      do 20 i=1,n
        b(i)=x(q(i))
20    continue
      end
c----------------------------------------------------------------------

      SUBROUTINE INDEXX(N,ARRIN,INDX)

      integer INDX(N)
      integer n,j,l,ir,indxt,i
      double precision arrin(n),q

      DO 11 J=1,N
        INDX(J)=J
11    CONTINUE
      L=N/2+1
      IR=N
10    CONTINUE
        IF(L.GT.1)THEN
          L=L-1
          INDXT=INDX(L)
          Q=ARRIN(INDXT)
        ELSE
          INDXT=INDX(IR)
          Q=ARRIN(INDXT)
          INDX(IR)=INDX(1)
          IR=IR-1
          IF(IR.EQ.1)THEN
            INDX(1)=INDXT
            RETURN
          ENDIF
        ENDIF
        I=L
        J=L+L
20      IF(J.LE.IR)THEN
          IF(J.LT.IR)THEN
            IF(ARRIN(INDX(J)).LT.ARRIN(INDX(J+1)))J=J+1
          ENDIF
          IF(Q.LT.ARRIN(INDX(J)))THEN
            INDX(I)=INDX(J)
            I=J
            J=J+J
          ELSE
            J=IR+1
          ENDIF
        GO TO 20
        ENDIF
        INDX(I)=INDXT
      GO TO 10
      END
      
cccccccccccccccccc
c
c     newdepth
c
cccccccccccccccccc

c----------------------------------------------------------------------
      SUBROUTINE funMD(A,B,M,N,D,Q,funDEP)
      
      INTEGER N,M,D,I,J      
      double precision A(M*D),B(N*D),METR1(N*N),METR2(N*M),funDEP(M)
      double precision Q,H,PI
c     Q is quantile, default 0.15, Cuevas 0.2     
      
      CALL metrl2(B,B,N,N,D,METR1)
      CALL metrl2(A,B,M,N,D,METR2)
      CALL SORT(METR1,N*N)
      H = METR1(INT(Q*(N*N+0.0)))
      PI=4.D0*DATAN(1.D0)
      DO 10 I=1,M*N
            METR2(I) = EXP(-(METR2(I)/H)**2/2.0)/SQRT(2.0*PI)
10    CONTINUE
      DO 20 I=1,M
            funDEP(I)=0.0
            DO 15 J=1,N
                  funDEP(I) = funDEP(I)+METR2((J-1)*M+I)
15          CONTINUE
20    CONTINUE      
      RETURN
      END
      

c----------------------------------------------------------------------
      SUBROUTINE funRPD1(A,B,M,N,D,NPROJ,NPROJ2,V,funSDEP,
     +funHDEP,funRDEP)
      
c     computes fast random projection depth for 1D functions using 
c     NPROJ simple iid gaussian processes projection and then 1D
c     simplicial or halfspace depth 
c     RDEP random halfspace depth (Cuesta-Albertos, Nieto-Reyes 2008)
c     NPROJ2 nr of projections for RDEP

      INTEGER M,N,D,NPROJ,NPROJ2
      double precision A(M*D),B(N*D),funSDEP(M),funHDEP(M),funRDEP(M)
      double precision V(D*NPROJ),AP,BP(N),VNORM
      INTEGER I,J,K
      double precision hSDEP,hHDEP

      DO 5 I=1,M
            funSDEP(I) = 0.0
            funHDEP(I) = 0.0
            funRDEP(I) = 2.0
5     CONTINUE      
c     main loop
      DO 40 K=1,NPROJ
c     generating a single gaussian processes
      VNORM = 0.0
      DO 10 I=1,D
             Vnorm = VNORM + V((K-1)*D+I)**2
10    CONTINUE
      VNORM = sqrt(VNORM - (V((K-1)*D+1)**2+V((K-1)*D+D)**2)/(2.0))
c     loop projecting j-th function of the random sample B on v
      DO 18 J=1,N
            BP(J) = 0.0
            DO 15 I=1,D
                  BP(J) = BP(J)+ B((I-1)*N+J)*V((K-1)*D+I)/VNORM
15          CONTINUE
            BP(J) = BP(J)/(D+0.0)
18    CONTINUE
c     loop with projecting j-th function of the random sample A on v
      DO 30 J=1,M
            AP = 0.0
c     compute projection of j-th function A
            DO 20 I=1,D
                  AP = AP + A((I-1)*M+J)*V((K-1)*D+I)/VNORM
20          CONTINUE
            AP = AP/(D+0.0)
            hSDEP = 0.0
            hHDEP = 0.0
            CALL fD1(AP,N,BP,hSDEP,hHDEP)
            funSDEP(J) = funSDEP(J) + hSDEP
            funHDEP(J) = funHDEP(J) + hHDEP
            IF (K .LE. NPROJ2) THEN 
                  funRDEP(J) = min(funRDEP(J),hHDEP)
                  ENDIF
30    CONTINUE
40    CONTINUE
c     averaging projection depth over all projections
      DO 50 I=1,M
            funSDEP(I) = funSDEP(I)/(NPROJ+0.0)
            funHDEP(I) = funHDEP(I)/(NPROJ+0.0)
50    CONTINUE
      RETURN
      END
      
c-------------------------------------
c Fraiman Muniz type integrated depths
c for 1 and 2d functions, halfspace and simplicial depth
c-------------------------------------

      SUBROUTINE funD2(A1,A2,B1,B2,M,N,D,funSDEP,funHDEP,
     +fIsdep,fIhdep,IAsdep,IAhdep)

c     using fdepth computes 2dimensional depth of functions in A1,A2
c     with respect to the functions in B1,B2
c     M size of functions in A
c     N size of functions in B
c     D dimensionality of functions
        
      INTEGER N,M,D
      INTEGER IAsdep(M),IAhdep(M)
      double precision A1(M*D),A2(M*D),B1(N*D),B2(N*D),funSDEP(M),
     +funHDEP(M),fIsdep(M),fIhdep(M) 
      double precision B1H(N),B2H(N)
      double precision hSDEP,hHDEP
      double precision hALPHA(N)
      INTEGER hF(N),I,J,K

      DO 5 I=1,M
            funSDEP(I) = 0.0
            funHDEP(I) = 0.0
            fISDEP(I) = 2.0
            fIHDEP(I) = 2.0 
            IAsdep(I) = 0
            IAhdep(I) = 0           
5     CONTINUE
c       essential loop, computing 2D depths at each point
      DO 30 I=1,D
            DO 10 K=1,N
                  B1H(K) = B1((I-1)*N+K)
                  B2H(K) = B2((I-1)*N+K)
10          CONTINUE
            DO 20 J=1,M
                  hSDEP = 0.0
                  hHDEP = 0.0
                  hALPHA(1) = N+0.0
                  hF(1) = N
      CALL fD2(A1((I-1)*M+J),A2((I-1)*M+J),N,B1H,B2H,hALPHA,hF,
     +hSDEP,hHDEP)
                  funSDEP(J) = funSDEP(J) + hSDEP
                  funHDEP(J) = funHDEP(J) + hHDEP
c     counting the area of the smallest depth for each function
                  IF (hSDEP.EQ.fISDEP(J)) THEN
                        IAsdep(J) = IAsdep(J)+1
                  ELSEIF (hSDEP.LT.fISDEP(J)) THEN 
                        IAsdep(J) = 1
                  ENDIF
                  IF (hHDEP.EQ.fIHDEP(J)) THEN
                        IAhdep(J) = IAhdep(J)+1
                  ELSEIF (hHDEP.LT.fIHDEP(J)) THEN 
                        IAhdep(J) = 1
                  ENDIF 
c     infimal depth evaluation
                  fISDEP(J) = min(fISDEP(J),hSDEP)
                  fIHDEP(J) = min(fIHDEP(J),hHDEP)                  
20          CONTINUE
30    CONTINUE
c       dividing the resulting depths by number of points d
      DO 40 I=1,M
            funSDEP(I) = funSDEP(I)/(D+0.0)
            funHDEP(I) = funHDEP(I)/(D+0.0)
40    CONTINUE
      RETURN
      END 
      
c----------------------------------------------------------------------
c     2D RANDOM PROJECTION DEPTH
c     PROJECTIONS ON WHITE NOISE
c     DEPENDS ON THE RANDOM NUMBER GENERATOR VERSION
c----------------------------------------------------------------------
      
      SUBROUTINE funRPD2(A1,A2,B1,B2,M,N,D,NPROJ,V,Q,funSDEP,
     +funHDEP,funMDEP,funSDDEP,funHDDEP)
      
c     computes fast random projection depth for 2D functions using 
c     NPROJ simple iid gaussian processes projection and then 2D
c     simplicial or halfspace depth 
c     Q is quantile used in MDEP
c     funDDEP is double random projection (2*D-dim)->(2-dim)->(1-dim)
c     and then appying Halfspace depth (equiv to quantile as Cuevas 2007)

      INTEGER M,N,D,NPROJ
      double precision A1(M*D),A2(M*D),B1(N*D),B2(N*D),funSDEP(M),
     +funHDEP(M),funMDEP(M),Q,funSDDEP(M),funHDDEP(M)
      double precision V(D*NPROJ+2*NPROJ),A1P,A2P,B1P(N),B2P(N),
     +VNORM,VNORMF,AP(2*M),BP(2*N),VF(2),AFP,BFP(N)
c     last 2*NPROJ of V are for the second random projection 2d->1d
c     VF(2) is the final projection
      INTEGER I,J,K
      double precision hSDEP,hHDEP,hMDEP(M),hHDDEP,hSDDEP
      double precision hALPHA(N)
      INTEGER hF(N)

      DO 5 I=1,M
            funSDEP(I) = 0.0
            funHDEP(I) = 0.0
            funMDEP(I) = 0.0
            funSDDEP(I) = 0.0
            funHDDEP(I) = 0.0
5     CONTINUE      
c     main loop
      DO 40 K=1,NPROJ
c     generating a single gaussian processes
      VNORM = 0.0
      VNORMF = sqrt(V(NPROJ*D+(K-1)*2+1)**2+V(NPROJ*D+(K-1)*2+2)**2)
      VF(1) = V(NPROJ*D+(K-1)*2+1)/VNORMF
      VF(2) = V(NPROJ*D+(K-1)*2+2)/VNORMF
c     final projection is now normed
      DO 10 I=1,D
             VNORM = VNORM + V((K-1)*D+I)**2
10    CONTINUE
      VNORM = sqrt(VNORM - (V((K-1)*D+1)**2+V((K-1)*D+D)**2)/(2.0))
c     loop projecting j-th function of the random sample B on v
      DO 18 J=1,N
            B1P(J) = 0.0
            B2P(J) = 0.0
            DO 15 I=1,D
                  B1P(J) = B1P(J)+ B1((I-1)*N+J)*V((K-1)*D+I)/VNORM
                  B2P(J) = B2P(J)+ B2((I-1)*N+J)*V((K-1)*D+I)/VNORM
15          CONTINUE
            BFP(J) = B1P(J)*VF(1)+B2P(J)*VF(2)
18    CONTINUE
      DO 19 I=1,N
            BP(I)=B1P(I)
            BP(N+I)=B2P(I)
19    CONTINUE
c     loop with projecting j-th function of the random sample A on v
      DO 30 J=1,M
            A1P = 0.0
            A2P = 0.0
c     compute projection of j-th function A
            DO 20 I=1,D
                  A1P = A1P + A1((I-1)*M+J)*V((K-1)*D+I)/VNORM
                  A2P = A2P + A2((I-1)*M+J)*V((K-1)*D+I)/VNORM
20          CONTINUE
            AP(J) = A1P
            AP(J+M) = A2P
            hSDEP = 0.0
            hHDEP = 0.0
            hMDEP(J) = 0.0
            hALPHA(1) = N+0.0
            hF(1) = N
            CALL fD2(A1P,A2P,N,B1P,B2P,hALPHA,hF,
     +hSDEP,hHDEP)
            funSDEP(J) = funSDEP(J) + hSDEP
            funHDEP(J) = funHDEP(J) + hHDEP
c     and now the second projection of A
            AFP = A1P*VF(1)+A2P*VF(2)
            hHDDEP = 0.0
            hSDDEP = 0.0
            CALL fD1(AFP,N,BFP,hSDDEP,hHDDEP)
            funSDDEP(J) = funSDDEP(J) + hSDDEP
            funHDDEP(J) = funHDDEP(J) + hHDDEP
30    CONTINUE
      CALL funMD(AP,BP,M,N,2,Q,hMDEP)
      DO 35 I=1,M
            funMDEP(I) = funMDEP(I) + hMDEP(I)
35    CONTINUE
40    CONTINUE
c     averaging projection depth over all projections
      DO 50 I=1,M
            funSDEP(I) = funSDEP(I)/(NPROJ+0.0)
            funHDEP(I) = funHDEP(I)/(NPROJ+0.0)
            funMDEP(I) = funMDEP(I)/(NPROJ+0.0)
            funSDDEP(I) = funSDDEP(I)/(NPROJ+0.0)
            funHDDEP(I) = funHDDEP(I)/(NPROJ+0.0)
50    CONTINUE
      RETURN
      END
      
c
c
c     halfregiondepth.f
c
c

      SUBROUTINE HRD(A,B,M,N,D,FD)
c     computes fast half-region depth of Lopez-Pintado and Romo 2011
      INTEGER M,N,D
      double precision A(M*D),B(N*D),FD(M)
      INTEGER I,J,K, U, L, UI, LI

      DO 30 I=1,M
            FD(I) = 0.0
            U = 0
            L = 0
            DO 20 J=1,N
                  UI = 0
                  LI = 0
                  K = 0
                  DO 10 WHILE ((K .LT. D) 
     +                  .AND. (UI .EQ. 0 .OR. LI .EQ. 0)) 
                        K = K + 1
                        IF(A((K-1)*M+I) .GT. B((K-1)*N+J)) UI = UI + 1
                        IF(A((K-1)*M+I) .LT. B((K-1)*N+J)) LI = LI + 1
10                CONTINUE
                  IF (UI .EQ. 0) U = U+1
                  IF (LI .EQ. 0) L = L+1
20          CONTINUE
            FD(I) = (MIN(U,L)+0.0)/(N+0.0)             
30    CONTINUE
      RETURN
      END 

c----------------------------------------------------------------------      
      SUBROUTINE BD(A,B,M,N,D,FD)
c     computes fast 2nd order band depth of Lopez-Pintado and Romo 2009
      INTEGER M,N,D
      double precision A(M*D),B(N*D),FD(M),L,U
      INTEGER I,J,JJ,K,W,WI

      DO 30 I=1,M
            FD(I) = 0.0
            W = 0
            DO 20 J=1,(N-1)
                  DO 15 JJ=(J+1),N
                        WI = 0
                        K = 0
                  DO 10 WHILE ( WI .GE. 0) 
c     -1 means TRUE, the function is in the band of J and JJ
c     -2 means FALSE, the function crosses
                        WI = WI + 1
                        K = K+1
                        L = MIN(B((K-1)*N+J),B((K-1)*N+JJ))
                        U = MAX(B((K-1)*N+J),B((K-1)*N+JJ))
                        IF (A((K-1)*M+I) .LT. L .OR. 
     +  A((K-1)*M+I) .GT. U) WI = -2
                        IF (WI .NE. -2 .AND. WI .EQ. D) WI = -1
10                CONTINUE
                  IF (WI .EQ. -1) W = W+1
15                CONTINUE
20          CONTINUE
            FD(I) = (W+0.0)/((N*(N-1))/2 + 0.0)          
30    CONTINUE
      RETURN
      END 
      
c-------------------------------------
c bivariate halfspace and simplicial depth
c-------------------------------------

      SUBROUTINE DPTH2(A1,A2,B1,B2,M,N,SDEP,HDEP)

c     computes 2dimensional depth of A1,A2
c     with respect to B1,B2
c     M size of A
c     N size of B
        
      INTEGER N,M
      double precision A1(M),A2(M),B1(N),B2(N),SDEP(M),HDEP(M)
      double precision hSDEP,hHDEP
      double precision hALPHA(N)
      INTEGER hF(N),I,J,K

      DO 5 I=1,M
            SDEP(I) = 0.0
            HDEP(I) = 0.0
5     CONTINUE
      DO 10 J=1,M
            hSDEP = 0.0
            hHDEP = 0.0
            hALPHA(1) = N+0.0
            hF(1) = N
      CALL fD2(A1(J),A2(J),N,B1,B2,hALPHA,hF,
     +hSDEP,hHDEP)
            SDEP(J) = hSDEP
            HDEP(J) = hHDEP
10    CONTINUE
      RETURN
      END 
      
c-------------------------------------
c univariate halfspace and simplicial depth
c-------------------------------------

      SUBROUTINE DPTH1(A1,B1,M,N,SDEP,HDEP)

c     computes 1dimensional depth of A1
c     with respect to B1
c     M size of A
c     N size of B
        
      INTEGER N,M
      double precision A1(M),B1(N),SDEP(M),HDEP(M)
      double precision hSDEP,hHDEP
      double precision hALPHA(N)
      INTEGER hF(N),I,J,K

      DO 5 I=1,M
            SDEP(I) = 0.0
            HDEP(I) = 0.0
5     CONTINUE
      DO 10 J=1,M
            hSDEP = 0.0
            hHDEP = 0.0
            hALPHA(1) = N+0.0
            hF(1) = N
      CALL fD1(A1(J),N,B1,hSDEP,hHDEP)
            SDEP(J) = hSDEP
            HDEP(J) = hHDEP
10    CONTINUE
      RETURN
      END