1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
|
---
title: "Introduction to dendextend"
date: "`r Sys.Date()`"
author: "Tal Galili"
output:
html_vignette:
self_contained: yes
toc: true
editor_options:
chunk_output_type: console
---
<!--
%\VignetteEngine{knitr::rmarkdown}
%\VignetteIndexEntry{Introduction to dendextend}
-->
```{r, echo = FALSE, message = FALSE}
library(dendextend)
library(knitr)
knitr::opts_chunk$set(
cache = TRUE,
dpi = 75,
fig.width = 6, fig.height = 6,
comment = "#>",
tidy = FALSE)
# https://stackoverflow.com/questions/24091735/why-pandoc-does-not-retrieve-the-image-file
# < ! -- rmarkdown v1 -->
```
**Author**: [Tal Galili](https://www.r-statistics.com/) ( Tal.Galili@gmail.com )
**tl;dr**: the [_dendextend package_](https://cran.r-project.org/package=dendextend) let's you create figures like this:
```{r, echo=FALSE, warning=FALSE, fig.align='center', fig.width=7, fig.height=7}
suppressMessages(library(dendextend))
library(colorspace)
dend1 <- c(1:5) %>% # take some data
dist %>% # calculate a distance matrix,
hclust(method = "average") %>% # on it compute hierarchical clustering using the "average" method,
as.dendrogram # and lastly, turn that object into a dendrogram.
dend2 <- c(1:5) %>% # take some data
dist %>% # calculate a distance matrix,
hclust(method = "single") %>% # on it compute hierarchical clustering using the "average" method,
as.dendrogram # and lastly, turn that object into a dendrogram.
dend1 <- rotate(dend1, order = c(as.character(5:1)))
labels(dend1) <- rev(c("dendextend", "let's u easily", "control","(and compare) your", "dendrograms"))
labels(dend2) <- rev(c("let's u easily","dendextend" ,"control","(and compare) your", "dendrograms"))
dend1 <- dend1 %>%
color_labels %>%
set("labels_cex", c(2.2,1.4)) %>%
set("branches_lwd", c(4,1,4)) %>%
set("branches_lty", c(1,2,1)) %>%
set("nodes_pch", c(NA,19,NA)) %>%
set("nodes_cex", c(NA,2.5,NA)) %>%
set("nodes_col", c(NA,3,NA)) %>%
hang.dendrogram # %>% plot
dend2 <- color_branches(dend2)
# dend2 <- color_labels(dend2)
tanglegram(dendlist(dend1, dend2), margin_inner = 9,
color_lines = c(rep("darkgreen", 3) , rep("darkred",2)),
sub= paste("Entanglement:", round(entanglement(dendlist(dend1, dend2)),2)), cex_sub = 1.5
)
# dend2 %>% color_branches %>% plot
# dend2 %>% color_branches(k=3) %>% plot # nice, returns the tree as is...
# dend2 %>% color_labels %>% plot
# cutree(dend2,3)
```
Introduction
--------------
The [**_dendextend package_**](https://cran.r-project.org/package=dendextend) offers a set of functions for extending dendrogram objects in R, letting you **visualize** and **compare** trees of hierarchical clusterings, you can:
* **Adjust a tree's graphical parameters** - the color, size, type, etc of its branches, nodes and labels.
* Visually and statistically **compare different dendrograms** to one another.
The goal of this document is to introduce you to the basic functions that dendextend provides, and show how they may be applied. We will make extensive use of "chaining" (explained next).
Prerequisites
--------------
### Acknowledgement
This package was made possible by the the support of my thesis adviser [Yoav Benjamini](http://www.math.tau.ac.il/~ybenja/), as well as code contributions from many R users. They are:
```{r, echo=FALSE}
c(person("Tal", "Galili", role = c("aut", "cre", "cph"), email =
"tal.galili@gmail.com", comment = "https://www.r-statistics.com"),
person("Gavin", "Simpson", role = "ctb"), person("Gregory","Jefferis", role
= "ctb", email = "jefferis@gmail.com",
comment ="imported code from his dendroextras package"),
person("Marco", "Gallotta", role = "ctb", comment =
"a.k.a: marcog") , person("Johan", "Renaudie", role = "ctb", comment =
"https://github.com/plannapus"), person("R core team", role = "ctb",
comment = "Thanks for the Infastructure, and code in the examples"),
person("Kurt", "Hornik", role = "ctb"), person("Uwe", "Ligges",
role = "ctb"), person("Andrej-Nikolai", "Spiess", role = "ctb"),
person("Steve", "Horvath",email = "SHorvath@mednet.ucla.edu", role =
"ctb"), person("Peter", "Langfelder",email = "Peter.Langfelder@gmail.com",
role = "ctb"), person("skullkey", role = "ctb"), person("Mark",
"Van Der Loo", email = "mark.vanderloo@gmail.com", comment =
"https://github.com/markvanderloo d3dendrogram", role = "ctb"),
person("Yoav", "Benjamini", role = "ths"))
```
The **design** of the dendextend package (and this manual!) is heavily inspired by [Hadley Wickham's](http://hadley.nz) work. Especially his text on [writing an R package](http://r-pkgs.had.co.nz/), the [devtools package](https://cran.r-project.org/package=devtools), and the dplyr package (specifically the use of chaining, and the [Introduction text to dplyr](https://CRAN.R-project.org/package=dplyr/vignettes/dplyr.html)).
### Chaining
Function calls in dendextend often get a dendrogram and returns a (modified) dendrogram. This doesn't lead to particularly elegant code if you want to do many operations at once. The same is true even in the first stage of creating a dendrogram.
In order to construct a dendrogram, you will (often) need to go through several steps. You can either do so while keeping the intermediate results:
```{r, eval = FALSE}
d1 <- c(1:5) # some data
d2 <- dist(d1)
d3 <- hclust(d2, method = "average")
dend <- as.dendrogram(d3)
```
Or, you can also wrap the function calls inside each other:
```{r, eval=FALSE}
dend <- as.dendrogram(hclust(dist(c(1:5)), method = "average"))
```
However, both solutions are not ideal: the first solution includes redundant intermediate objects, while the second is difficult to read (since the order of the operations is from inside to out, while the arguments are a long way away from the function).
To get around this problem, dendextend encourages the use of the `%>%` ("pipe" or "chaining") operator (imported from the magrittr package). This turns `x %>% f(y)` into `f(x, y)` so you can use it to rewrite ("chain") multiple operations such that they can be read from left-to-right, top-to-bottom.
For example, the following will be written as it would be explained:
```{r, eval = FALSE}
dend <- c(1:5) %>% # take the a vector from 1 to 5
dist %>% # calculate a distance matrix,
hclust(method = "average") %>% # on it compute hierarchical clustering using the "average" method,
as.dendrogram # and lastly, turn that object into a dendrogram.
```
For more details, you may look at:
* [magrittr on CRAN](https://cran.r-project.org/package=magrittr)
* [Introduction to the magrittr package](https://CRAN.R-project.org/package=magrittr/vignettes/magrittr.html)
* [Simpler R coding with pipes > the present and future of the magrittr package](https://www.r-statistics.com/2014/08/simpler-r-coding-with-pipes-the-present-and-future-of-the-magrittr-package/)
### A dendrogram is a nested list of lists with attributes
The first step is working with dendrograms, is to understand that they are just a **nested list of lists with attributes**. Let us explore this for the following (tiny) tree:
```{r, fig.width=4, fig.height=3}
# Create a dend:
dend <- 1:2 %>% dist %>% hclust %>% as.dendrogram
# and plot it:
dend %>% plot
```
And here is its structure (a nested list of lists with attributes):
```{r}
dend %>% unclass %>% str
dend %>% class
```
### Installation
To install the stable version on CRAN use:
```r
install.packages('dendextend')
```
To install the GitHub version:
```R
require2 <- function (package, ...) {
if (!require(package)) install.packages(package); library(package)
}
## require2('installr')
## install.Rtools() # run this if you are using Windows and don't have Rtools installed
# Load devtools:
require2("devtools")
devtools::install_github('talgalili/dendextend')
<!-- require2("Rcpp") -->
# Having colorspace is also useful, since it is used
# In various examples in the vignettes
require2("colorspace")
```
And then you may load the package using:
```R
library(dendextend)
```
How to explore a dendrogram's parameters
---------------------------------------
### Taking a first look at a dendrogram
For the following simple tree:
```{r, fig.width=4, fig.height=3}
# Create a dend:
dend <- 1:5 %>% dist %>% hclust %>% as.dendrogram
# Plot it:
dend %>% plot
```
Here are some basic parameters we can get:
```{r}
dend %>% labels # get the labels of the tree
dend %>% nleaves # get the number of leaves of the tree
dend %>% nnodes # get the number of nodes in the tree (including leaves)
dend %>% head # A combination of "str" with "head"
```
Next let us look at more sophisticated outputs.
### Getting nodes attributes in a depth-first search
When extracting (or inserting) attributes from a dendrogram's nodes, it is often in a "depth-first search". [Depth-first search](https://en.wikipedia.org/wiki/Depth-first_search) is when an algorithm for traversing or searching tree or graph data structures. One starts at the root and explores as far as possible along each branch before backtracking.
Here is a plot of a tree, illustrating the order in which you should read the "nodes attributes":
```{r, echo=FALSE, fig.height=5}
# Create a dend:
dend <- 1:5 %>% dist %>% hclust %>% as.dendrogram
# get_nodes_xy(dend)
# polygon(get_nodes_xy(dend), col = 2)
plot(dend,
leaflab = "none", # axes = FALSE, # no labels or y axis
main = "Nodes order when using \nDepth-first search in a dendrogram")
xy <- get_nodes_xy(dend)
for(i in 1:(nrow(xy)-1)) {
arrows(xy[i,1], xy[i,2], angle = 17,
length = .3,
xy[i+1,1], xy[i+1,2],
lty = 1, col = 3, lwd = 1.5)
}
points(xy, pch = 19, cex = 3)
text(xy, labels = 1:nnodes(dend),cex = 1.2, col = "white") #, adj = c(0.4,0.4))
```
We can get several nodes attributes using `get_nodes_attr` (notice the order corresponds with what is shown in the above figure):
```{r}
# Create a dend:
dend <- 1:5 %>% dist %>% hclust %>% as.dendrogram
# Get various attributes
dend %>% get_nodes_attr("height") # node's height
dend %>% hang.dendrogram %>% get_nodes_attr("height") # node's height (after raising the leaves)
dend %>% get_nodes_attr("members") # number of members (leaves) under that node
dend %>% get_nodes_attr("members", id = c(2,5)) # number of members for nodes 2 and 5
dend %>% get_nodes_attr("midpoint") # how much "left" is this node from its left-most child's location
dend %>% get_nodes_attr("leaf") # is this node a leaf
dend %>% get_nodes_attr("label") # what is the label on this node
dend %>% get_nodes_attr("nodePar") # empty (for now...)
dend %>% get_nodes_attr("edgePar") # empty (for now...)
```
A similar function for leaves only is `get_leaves_attr`
How to change a dendrogram
------------------------------------
### The "set" function
The fastest way to start changing parameters with dendextend is by using the `set` function. It is written as: `set(object, what, value)`, and accepts the following parameters:
1. **object**: a dendrogram object,
2. **what**: a character indicating what is the property of the tree that should be set/updated
3. **value**: a vector with the value to set in the tree (the type of the value depends on the "what"). Many times, vectors which are too short are recycled.
The **what** parameter accepts many options, each uses some general function in the background. These options deal with labels, nodes and branches. They are:
* labels - set the labels (using `labels<-.dendrogram`)
* labels_colors - set the labels' colors (using `color_labels`)
* labels_cex - set the labels' size (using `assign_values_to_leaves_nodePar`)
* labels_to_character - set the labels' to be characters
* leaves_pch - set the leaves' point type (using `assign_values_to_leaves_nodePar`)
* leaves_cex - set the leaves' point size (using `assign_values_to_leaves_nodePar`)
* leaves_col - set the leaves' point color (using `assign_values_to_leaves_nodePar`)
* nodes_pch - set the nodes' point type (using `assign_values_to_nodes_nodePar`)
* nodes_cex - set the nodes' point size (using `assign_values_to_nodes_nodePar`)
* nodes_col - set the nodes' point color (using `assign_values_to_nodes_nodePar`)
* hang_leaves - hang the leaves (using `hang.dendrogram`)
* branches_k_color - color the branches (using `color_branches`)
* branches_col - set the color of branches (using `assign_values_to_branches_edgePar`)
* branches_lwd - set the line width of branches (using `assign_values_to_branches_edgePar`)
* branches_lty - set the line type of branches (using `assign_values_to_branches_edgePar`)
* by_labels_branches_col - set the color of branches with specific labels (using `branches_attr_by_labels`)
* by_labels_branches_lwd - set the line width of branches with specific labels (using `branches_attr_by_labels`)
* by_labels_branches_lty - set the line type of branches with specific labels (using `branches_attr_by_labels`)
* clear_branches - clear branches' attributes (using `remove_branches_edgePar`)
* clear_leaves - clear leaves' attributes (using `remove_branches_edgePar`)
### Two simple trees to play with
For illustration purposes, we will create several small tree, and demonstrate these functions on them.
```{r, fig.show='hold', fig.width=8, fig.height=3}
dend13 <- c(1:3) %>% # take some data
dist %>% # calculate a distance matrix,
hclust(method = "average") %>% # on it compute hierarchical clustering using the "average" method,
as.dendrogram # and lastly, turn that object into a dendrogram.
# same, but for 5 leaves:
dend15 <- c(1:5) %>% dist %>% hclust(method = "average") %>% as.dendrogram
par(mfrow = c(1,2))
dend13 %>% plot(main="dend13")
dend15 %>% plot(main="dend15")
# we could have also used plot(dend)
```
### Setting a dendrogram's labels
We can get a vector with the tree's labels:
```{r}
# get the labels:
dend15 %>% labels
# this is just like labels(dend)
```
Notice how the tree's labels are not 1 to 5 by order, since the tree happened to place them in a different order. We can change the names of the labels:
```{r}
# change the labels, and then print them:
dend15 %>% set("labels", c(111:115)) %>% labels
# could also be done using:
# labels(dend) <- c(111:115)
```
We can change the type of labels to be characters. Not doing so may be a source of various bugs and problems in many functions.
```{r}
dend15 %>% labels
dend15 %>% set("labels_to_char") %>% labels
```
We may also change their color and size:
```{r, fig.width=8, fig.height=3}
par(mfrow = c(1,2))
dend15 %>% set("labels_col", "blue") %>% plot(main = "Change label's color") # change color
dend15 %>% set("labels_cex", 2) %>% plot(main = "Change label's size") # change color
```
The function recycles, from left to right, the vector of values we give it. We can use this to create more complex patterns:
```{r, fig.width=8, fig.height=3}
# Produce a more complex dendrogram:
dend15_2 <- dend15 %>%
set("labels", c(111:115)) %>% # change labels
set("labels_col", c(1,2,3)) %>% # change color
set("labels_cex", c(2,1)) # change size
par(mfrow = c(1,2))
dend15 %>% plot(main = "Before")
dend15_2 %>% plot(main = "After")
```
Notice how these "labels parameters" are nested within the nodePar attribute:
```{r}
# looking at only the left-most node of the "after tree":
dend15_2[[1]][[1]] %>% unclass %>% str
# looking at only the nodePar attributes in this sub-tree:
dend15_2[[1]][[1]] %>% get_nodes_attr("nodePar")
```
When it comes to color, we can also set the parameter "k", which will cut the tree into k clusters, and assign a different color to each label (based on its cluster):
```{r, fig.width=8, fig.height=3}
par(mfrow = c(1,2))
dend15 %>% set("labels_cex", 2) %>% set("labels_col", value = c(3,4)) %>%
plot(main = "Recycles color \nfrom left to right")
dend15 %>% set("labels_cex", 2) %>% set("labels_col", value = c(3,4), k=2) %>%
plot(main = "Color labels \nper cluster")
abline(h = 2, lty = 2)
```
### Setting a dendrogram's nodes/leaves (points)
Each node in a tree can be represented and controlled using the `assign_values_to_nodes_nodePar`, and for the special case of the nodes of leaves, the `assign_values_to_leaves_nodePar` function is more appropriate (and faster) to use. We can control the following properties: pch (point type), cex (point size), and col (point color). For example:
```{r, fig.width=10, fig.height=6}
par(mfrow = c(2,3))
dend13 %>% set("nodes_pch", 19) %>% plot(main = "(1) Show the\n nodes (as a dot)") #1
dend13 %>% set("nodes_pch", 19) %>% set("nodes_cex", 2) %>%
plot(main = "(2) Show (larger)\n nodes") #2
dend13 %>% set("nodes_pch", 19) %>% set("nodes_cex", 2) %>% set("nodes_col", 3) %>%
plot(main = "(3) Show (larger+colored)\n nodes") #3
dend13 %>% set("leaves_pch", 19) %>% plot(main = "(4) Show the\n leaves (as a dot)") #4
dend13 %>% set("leaves_pch", 19) %>% set("leaves_cex", 2) %>%
plot(main = "(5) Show (larger)\n leaves") #5
dend13 %>% set("leaves_pch", 19) %>% set("leaves_cex", 2) %>% set("leaves_col", 3) %>%
plot(main = "(6) Show (larger+colored)\n leaves") #6
```
And with recycling we can produce more complex outputs:
```{r, fig.width=8, fig.height=4}
par(mfrow = c(1,2))
dend15 %>% set("nodes_pch", c(19,1,4)) %>% set("nodes_cex", c(2,1,2)) %>% set("nodes_col", c(3,4)) %>%
plot(main = "Adjust nodes")
dend15 %>% set("leaves_pch", c(19,1,4)) %>% set("leaves_cex", c(2,1,2)) %>% set("leaves_col", c(3,4)) %>%
plot(main = "Adjust nodes\n(but only for leaves)")
```
Notice how recycling works in a depth-first order (which is just left to right, when we only adjust the leaves). Here are the node's parameters after adjustment:
```{r}
dend15 %>% set("nodes_pch", c(19,1,4)) %>%
set("nodes_cex", c(2,1,2)) %>% set("nodes_col", c(3,4)) %>% get_nodes_attr("nodePar")
```
We can also change the height of of the leaves by using the `hang.dendrogram` function:
```{r, fig.width=10, fig.height=3}
par(mfrow = c(1,3))
dend13 %>% set("leaves_pch", 19) %>% set("leaves_cex", 2) %>% set("leaves_col", 2) %>% # adjust the leaves
hang.dendrogram %>% # hang the leaves
plot(main = "Hanging a tree")
dend13 %>% set("leaves_pch", 19) %>% set("leaves_cex", 2) %>% set("leaves_col", 2) %>% # adjust the leaves
hang.dendrogram(hang_height = .6) %>% # hang the leaves (at some height)
plot(main = "Hanging a tree (but lower)")
dend13 %>% set("leaves_pch", 19) %>% set("leaves_cex", 2) %>% set("leaves_col", 2) %>% # adjust the leaves
hang.dendrogram %>% # hang the leaves
hang.dendrogram(hang = -1) %>% # un-hanging the leaves
plot(main = "Not hanging a tree")
```
An example of what this function does to the leaves heights:
```{r}
dend13 %>% get_leaves_attr("height")
dend13 %>% hang.dendrogram %>% get_leaves_attr("height")
```
We can also control the general heights of nodes using `raise.dendrogram`:
```{r, fig.width=10, fig.height=3}
par(mfrow = c(1,3))
dend13 %>% plot(main = "First tree", ylim = c(0,3))
dend13 %>%
raise.dendrogram (-1) %>%
plot(main = "One point lower", ylim = c(0,3))
dend13 %>%
raise.dendrogram (1) %>%
plot(main = "One point higher", ylim = c(0,3))
```
If you wish to make the branches under the root have the same height, you can use the `flatten.dendrogram` function.
### Setting a dendrogram's branches
#### Adjusting all branches
Similar to adjusting nodes, we can also control line width (lwd), line type (lty), and color (col) for branches:
```{r, fig.width=10, fig.height=3}
par(mfrow = c(1,3))
dend13 %>% set("branches_lwd", 4) %>% plot(main = "Thick branches")
dend13 %>% set("branches_lty", 3) %>% plot(main = "Dashed branches")
dend13 %>% set("branches_col", 2) %>% plot(main = "Red branches")
```
We may also use recycling to create more complex patterns:
```{r, fig.width=4, fig.height=3}
# Produce a more complex dendrogram:
dend15 %>%
set("branches_lwd", c(4,1)) %>%
set("branches_lty", c(1,1,3)) %>%
set("branches_col", c(1,2,3)) %>%
plot(main = "Complex branches", edge.root = TRUE)
```
Notice how the first branch (the root) is considered when going through and creating the tree, but it is **ignored** in the actual plotting (this is actually a "missing feature" in `plot.dendrogram`).
#### Coloring branches based on clustering
We may also control the colors of the branches based on using clustering:
```{r, fig.width=8, fig.height=3}
par(mfrow = c(1,2))
dend15 %>% set("branches_k_color", k = 3) %>% plot(main = "Nice defaults")
dend15 %>% set("branches_k_color", value = 3:1, k = 3) %>%
plot(main = "Controlling branches' colors\n(via clustering)")
# This is like using the `color_branches` function
```
#### Adjusting branches based on labels
The most powerful way to control branches is through the `branches_attr_by_labels` function (with variations through the `set` function). The function allows you to change col/lwd/lty of branches if they match some "labels condition". Follow carefully:
```{r, fig.width=8, fig.height=3}
par(mfrow = c(1,2))
dend15 %>% set("by_labels_branches_col", value = c(1,4)) %>%
plot(main = "Adjust the branch\n if ALL (default) of its\n labels are in the list")
dend15 %>% set("by_labels_branches_col", value = c(1,4), type = "any") %>%
plot(main = "Adjust the branch\n if ANY of its\n labels are in the list")
```
We can use this to change the size/type/color of the branches:
```{r, fig.width=10, fig.height=3}
# Using "Inf" in "TF_values" means to let the parameters stay as they are.
par(mfrow = c(1,3))
dend15 %>% set("by_labels_branches_col", value = c(1,4), TF_values = c(3,Inf)) %>%
plot(main = "Change colors")
dend15 %>% set("by_labels_branches_lwd", value = c(1,4), TF_values = c(8,1)) %>%
plot(main = "Change line width")
dend15 %>% set("by_labels_branches_lty", value = c(1,4), TF_values = c(3,Inf)) %>%
plot(main = "Change line type")
```
#### Highlighting branches' different heights using line width and color
The `highlight_branches` function helps to more easily see the topological structure of a tree, by adjusting branches appearence (color and line width) based on their height in the tree. For example:
```{r, fig.width=8, fig.height=3}
dat <- iris[1:20,-5]
hca <- hclust(dist(dat))
hca2 <- hclust(dist(dat), method = "single")
dend <- as.dendrogram(hca)
dend2 <- as.dendrogram(hca2)
par(mfrow = c(1,3))
dend %>% highlight_branches_col %>% plot(main = "Coloring branches")
dend %>% highlight_branches_lwd %>% plot(main = "Emphasizing line-width")
dend %>% highlight_branches %>% plot(main = "Emphasizing color\n and line-width")
```
Tanglegrams are even easier to compare when using
```{r, fig.width=8, fig.height=4}
library(viridis)
par(mfrow = c(1,3))
dend %>% highlight_branches_col %>% plot(main = "Coloring branches \n (default is reversed viridis)")
dend %>% highlight_branches_col(viridis(100)) %>% plot(main = "It is better to use \n lighter colors in the leaves")
dend %>% highlight_branches_col(rev(magma(1000))) %>% plot(main = "The magma color pallatte\n is also good")
dl <- dendlist(dend, dend2)
tanglegram(dl, sort = TRUE, common_subtrees_color_lines = FALSE, highlight_distinct_edges = FALSE, highlight_branches_lwd = FALSE)
tanglegram(dl)
tanglegram(dl, fast = TRUE)
dl <- dendlist(highlight_branches(dend), highlight_branches(dend2))
tanglegram(dl, sort = TRUE, common_subtrees_color_lines = FALSE, highlight_distinct_edges = FALSE)
# dend %>% set("highlight_branches_col") %>% plot
dl <- dendlist(dend, dend2) %>% set("highlight_branches_col")
tanglegram(dl, sort = TRUE, common_subtrees_color_lines = FALSE, highlight_distinct_edges = FALSE)
```
### Changing a dendrogram's structure
#### Rotation
A dendrogram is an object which can be rotated on its hinges without changing its topology.
Rotating a dendrogram in base R can be done using the `reorder` function. The problem with
this function is that it is not very intuitive. For this reason the `rotate` function was written.
It has two main arguments: the "object" (a dendrogram), and the "order" we wish to rotate it by. The "order" parameter can be either a numeric vector, used in a similar way we would order a simple
character vector. Or, the order parameter can also be a character vector of the labels of the
tree, given in the new desired order of the tree.
It is also worth noting that some order are impossible to achieve for a given tree's topology. In such cases, the function will do its "best" to get as close as possible to the requested rotation.
```{r, fig.width=10, fig.height=3}
par(mfrow = c(1,3))
dend15 %>%
set("labels_colors") %>%
set("branches_k_color") %>%
plot(main = "First tree")
dend15 %>%
set("labels_colors") %>%
set("branches_k_color") %>%
rotate(as.character(5:1)) %>% #rotate to match labels new order
plot(main = "Rotated tree\n based on labels")
dend15 %>%
set("labels_colors") %>%
set("branches_k_color") %>%
rotate(5:1) %>% # the fifth label to go first is "4"
plot(main = "Rotated tree\n based on order")
```
A new convenience S3 function for `sort` (`sort.dendrogram`) was added:
```{r, fig.width=12, fig.height=6}
dend110 <- c(1, 3:5, 7,9,10) %>% dist %>% hclust(method = "average") %>%
as.dendrogram %>% color_labels %>% color_branches
par(mfrow = c(1,3))
dend110 %>% plot(main = "Original tree")
dend110 %>% sort %>% plot(main = "labels sort")
dend110 %>% sort(type = "nodes") %>% plot(main = "nodes (ladderize) sort")
```
#### Unbranching
We can unbranch a tree:
```{r, fig.width=10, fig.height=3}
par(mfrow = c(1,3))
dend15 %>% plot(main = "First tree", ylim = c(0,3))
dend15 %>%
unbranch %>%
plot(main = "Unbranched tree", ylim = c(0,3))
dend15 %>%
unbranch(2) %>%
plot(main = "Unbranched tree (2)", ylim = c(0,3))
```
#### Pruning
We can prune a tree based on the labels:
```{r, fig.width=7, fig.height=3}
par(mfrow = c(1,2))
dend15 %>% set("labels_colors") %>%
plot(main = "First tree", ylim = c(0,3))
dend15 %>% set("labels_colors") %>%
prune(c("1","5")) %>%
plot(main = "Prunned tree", ylim = c(0,3))
```
For pruning two trees to have matching labels, we can use the `intersect_trees` function:
```{r, fig.width=7, fig.height=3}
par(mfrow = c(1,2))
dend_intersected <- intersect_trees(dend13, dend15)
dend_intersected[[1]] %>% plot
dend_intersected[[2]] %>% plot
```
#### Collapse branches
We can collapse branches under a tolerance level using the `collapse_branch` function:
```{r}
# ladderize is like sort(..., type = "node")
dend <- iris[1:5,-5] %>% dist %>% hclust %>% as.dendrogram
par(mfrow = c(1,3))
dend %>% ladderize %>% plot(horiz = TRUE); abline(v = .2, col = 2, lty = 2)
dend %>% collapse_branch(tol = 0.2) %>% ladderize %>% plot(horiz = TRUE)
dend %>% collapse_branch(tol = 0.2) %>% ladderize %>% hang.dendrogram(hang = 0) %>% plot(horiz = TRUE)
```
### Adding extra bars and rectangles
#### Adding colored rectangles
Earlier we have seen how to highlight clusters in a dendrogram by coloring branches. We can also draw rectangles around the branches of a dendrogram in order to highlight the corresponding clusters. First the dendrogram is cut at a certain level, then a rectangle is drawn around selected branches. This is done using the `rect.dendrogram`, which is modeled based on the `rect.hclust` function. One advantage of `rect.dendrogram` over `rect.hclust`, is that it also works on horizontally plotted trees:
```{r, fig.width=6, fig.height=3}
layout(t(c(1,1,1,2,2)))
dend15 %>% set("branches_k_color") %>% plot
dend15 %>% rect.dendrogram(k=3,
border = 8, lty = 5, lwd = 2)
dend15 %>% set("branches_k_color") %>% plot(horiz = TRUE)
dend15 %>% rect.dendrogram(k=3, horiz = TRUE,
border = 8, lty = 5, lwd = 2)
```
#### Adding colored bars
Adding colored bars to a dendrogram may be useful to show clusters or some outside categorization of the items. For example:
```{r, fig.width=4, fig.height=4}
is_odd <- ifelse(labels(dend15) %% 2, 2,3)
is_345 <- ifelse(labels(dend15) > 2, 3,4)
is_12 <- ifelse(labels(dend15) <= 2, 3,4)
k_3 <- cutree(dend15,k = 3, order_clusters_as_data = FALSE)
# The FALSE above makes sure we get the clusters in the order of the
# dendrogram, and not in that of the original data. It is like:
# cutree(dend15, k = 3)[order.dendrogram(dend15)]
the_bars <- cbind(is_odd, is_345, is_12, k_3)
the_bars[the_bars==2] <- 8
dend15 %>% plot
colored_bars(colors = the_bars, dend = dend15, sort_by_labels_order = FALSE)
# we use sort_by_labels_order = FALSE since "the_bars" were set based on the
# labels order. The more common use case is when the bars are based on a second variable
# from the same data.frame as dend was created from. Thus, the default
# sort_by_labels_order = TRUE would make more sense.
```
Another example, based on mtcars (in which the default of `sort_by_labels_order = TRUE` makes sense):
```{r}
dend_mtcars <- mtcars[, c("mpg", "disp")] %>% dist %>% hclust(method = "average") %>% as.dendrogram
par(mar = c(10,2,1,1))
plot(dend_mtcars)
the_bars <- ifelse(mtcars$am, "grey", "gold")
colored_bars(colors = the_bars, dend = dend_mtcars, rowLabels = "am")
```
ggplot2 integration
--------------------------
The core process is to transform a dendrogram into a `ggdend` object using `as.ggdend`, and then plot it using `ggplot` (a new S3 `ggplot.ggdend` function is available). These two steps can be done in one command with either the function `ggplot` or `ggdend`.
The reason we want to have `as.ggdend` (and not only `ggplot.dendrogram`), is (1) so that you could create your own mapping of `ggdend` and, (2) since `as.ggdend` might be slow for large trees, it is probably better to be able to run it only once for such cases.
A `ggdend` class object is a list with 3 components: segments, labels, nodes. Each one contains the graphical parameters from the original dendrogram, but in a tabular form that can be used by `ggplot2+geom_segment+geom_text` to create a dendrogram plot.
The function `prepare.ggdend` is used by `plot.ggdend` to take the ggdend object and prepare it for plotting. This is because the defaults of various parameters in dendrogram's are not always stored in the object itself, but are built-in into the `plot.dendrogram` function. For example, the color of the labels is not (by default) specified in the dendrogram (only if we change it from black to something else). Hence, when taking the object into a different plotting engine (say ggplot2), we want to prepare the object by filling-in various defaults. This function is automatically invoked within the `plot.ggdend` function. You would probably use it only if you'd wish to build your own ggplot2 mapping.
```{r}
# Create a complex dend:
dend <- iris[1:30,-5] %>% dist %>% hclust %>% as.dendrogram %>%
set("branches_k_color", k=3) %>% set("branches_lwd", c(1.5,1,1.5)) %>%
set("branches_lty", c(1,1,3,1,1,2)) %>%
set("labels_colors") %>% set("labels_cex", c(.9,1.2)) %>%
set("nodes_pch", 19) %>% set("nodes_col", c("orange", "black", "plum", NA))
# plot the dend in usual "base" plotting engine:
plot(dend)
# Now let's do it in ggplot2 :)
ggd1 <- as.ggdend(dend)
library(ggplot2)
# the nodes are not implemented yet.
ggplot(ggd1) # reproducing the above plot in ggplot2 :)
ggplot(ggd1, horiz = TRUE, theme = NULL) # horiz plot (and let's remove theme) in ggplot2
# Adding some extra spice to it...
# creating a radial plot:
# ggplot(ggd1) + scale_y_reverse(expand = c(0.2, 0)) + coord_polar(theta="x")
# The text doesn't look so great, so let's remove it:
ggplot(ggd1, labels = FALSE) + scale_y_reverse(expand = c(0.2, 0)) + coord_polar(theta="x")
```
**Credit:** These functions are *extended* versions of the functions `ggdendrogram`, `dendro_data` (and the hidden `dendrogram_data`) from Andrie de Vries's [ggdendro](https://cran.r-project.org/package=ggdendro) package. The motivation for this fork is the need to add more graphical parameters to the plotted tree. This required a strong mixture of functions from ggdendro and dendextend (to the point that it seemed better to just fork the code into its current form).
Enhancing other packages
--------------------------
The dendextend package aims to extend and enhance features from the R ecosystem. Let us take a look at several examples.
### DendSer
The DendSer package helps in re-arranging a dendrogram to optimize visualization-based cost functions. Until now it was only used for `hclust` objects, but it can easily be connected to `dendrogram` objects by trying to turn the dendrogram into hclust, on which it runs DendSer. This can be used to rotate the dendrogram easily by using the `rotate_DendSer` function:
```{r, fig.width=7, fig.height=3}
if(require(DendSer)) {
par(mfrow = c(1,2))
DendSer.dendrogram(dend15)
dend15 %>% color_branches %>% plot
dend15 %>% color_branches %>% rotate_DendSer %>% plot
}
```
### gplots
The gplots package brings us the `heatmap.2` function. In it, we can use our modified dendrograms to get more informative heat-maps:
```{r, message=FALSE, fig.width=7, fig.height=7}
library(gplots)
x <- as.matrix(datasets::mtcars)
heatmap.2(x)
# now let's spice up the dendrograms a bit:
Rowv <- x %>% dist %>% hclust %>% as.dendrogram %>%
set("branches_k_color", k = 3) %>% set("branches_lwd", 4) %>%
ladderize
# rotate_DendSer(ser_weight = dist(x))
Colv <- x %>% t %>% dist %>% hclust %>% as.dendrogram %>%
set("branches_k_color", k = 2) %>% set("branches_lwd", 4) %>%
ladderize
# rotate_DendSer(ser_weight = dist(t(x)))
heatmap.2(x, Rowv = Rowv, Colv = Colv)
```
### NMF
The same as gplots, NMF offers a heatmap function called `aheatmap`. We can update it just as we would `heatmap.2`.
Since NMF was removed from CRAN (it could still be installed from source), the example code is still available but not ran in this vignette.
```{r, message=FALSE, eval = FALSE}
# library(NMF)
#
# x <- as.matrix(datasets::mtcars)
#
# # now let's spice up the dendrograms a bit:
# Rowv <- x %>% dist %>% hclust %>% as.dendrogram %>%
# set("branches_k_color", k = 3) %>% set("branches_lwd", 4) %>%
# ladderize
# # rotate_DendSer(ser_weight = dist(x))
# Colv <- x %>% t %>% dist %>% hclust %>% as.dendrogram %>%
# set("branches_k_color", k = 2) %>% set("branches_lwd", 4) %>%
# ladderize
# # rotate_DendSer(ser_weight = dist(t(x)))
#
# aheatmap(x, Rowv = Rowv, Colv = Colv)
```
### heatmaply
The heatmaply package create interactive heat-maps that are usable from the R console, in the 'RStudio' viewer pane, in 'R Markdown' documents, and in 'Shiny' apps. By hovering the mouse pointer over a cell or a dendrogram to show details, drag a rectangle to zoom.
The use is very similar to what we've seen before, we just use `heatmaply` instead of `heatmap.2`:
```{r}
x <- as.matrix(datasets::mtcars)
# heatmaply(x)
# now let's spice up the dendrograms a bit:
Rowv <- x %>% dist %>% hclust %>% as.dendrogram %>%
set("branches_k_color", k = 3) %>% set("branches_lwd", 4) %>%
ladderize
# rotate_DendSer(ser_weight = dist(x))
Colv <- x %>% t %>% dist %>% hclust %>% as.dendrogram %>%
set("branches_k_color", k = 2) %>% set("branches_lwd", 4) %>%
ladderize
# rotate_DendSer(ser_weight = dist(t(x)))
```
Here we need to use `cache=FALSe` in the markdown:
```{r, message=FALSE, cache = FALSE, eval = FALSE}
library(heatmaply)
heatmaply(x, Rowv = Rowv, Colv = Colv)
```
I avoided running the code from above due to space issues on CRAN. For live examples, please go to:
- https://talgalili.github.io/heatmaply/articles/heatmaply.html
### dynamicTreeCut
The `cutreeDynamic` function offers a wrapper for two methods of adaptive branch pruning of hierarchical clustering dendrograms. The results of which can now be visualized by both updating the branches, as well as using the `colored_bars` function (which was adjusted for use with plots of dendrograms):
```{r}
# let's get the clusters
library(dynamicTreeCut)
data(iris)
x <- iris[,-5] %>% as.matrix
hc <- x %>% dist %>% hclust
dend <- hc %>% as.dendrogram
# Find special clusters:
clusters <- cutreeDynamic(hc, distM = as.matrix(dist(x)), method = "tree")
# we need to sort them to the order of the dendrogram:
clusters <- clusters[order.dendrogram(dend)]
clusters_numbers <- unique(clusters) - (0 %in% clusters)
n_clusters <- length(clusters_numbers)
library(colorspace)
cols <- rainbow_hcl(n_clusters)
true_species_cols <- rainbow_hcl(3)[as.numeric(iris[,][order.dendrogram(dend),5])]
dend2 <- dend %>%
branches_attr_by_clusters(clusters, values = cols) %>%
color_labels(col = true_species_cols)
plot(dend2)
clusters <- factor(clusters)
levels(clusters)[-1] <- cols[-5][c(1,4,2,3)]
# Get the clusters to have proper colors.
# fix the order of the colors to match the branches.
colored_bars(clusters, dend, sort_by_labels_order = FALSE)
# here we used sort_by_labels_order = FALSE since the clusters were already sorted based on the dendrogram's order
```
### pvclust
The pvclust library calculates "p-values"" for hierarchical clustering via multiscale bootstrap re-sampling. Hierarchical clustering is done for given data and p-values are computed for each of the clusters. The dendextend package let's us reproduce the plot from pvclust, but with a dendrogram (instead of an hclust object), which also lets us extend the visualization.
```{r, message=FALSE, fig.width=9, results='hide'}
par(mfrow = c(1,2))
library(pvclust)
data(lung) # 916 genes for 73 subjects
set.seed(13134)
result <- pvclust(lung[1:100, 1:10],
method.dist="cor", method.hclust="average", nboot=10)
# with pvrect
plot(result)
pvrect(result)
# with a dendrogram of pvrect
dend <- as.dendrogram(result)
result %>% as.dendrogram %>%
plot(main = "Cluster dendrogram with AU/BP values (%)\n reproduced plot with dendrogram")
result %>% text
result %>% pvrect
```
Let's color and thicken the branches based on the p-values:
```{r, fig.height=8, fig.width=8}
par(mfrow = c(2,2))
# with a modified dendrogram of pvrect
dend %>% pvclust_show_signif(result) %>%
plot(main = "Cluster dendrogram \n bp values are highlighted by signif")
dend %>% pvclust_show_signif(result, show_type = "lwd") %>%
plot(main = "Cluster dendrogram with AU/BP values (%)\n bp values are highlighted by signif")
result %>% text
result %>% pvrect(alpha=0.95)
dend %>% pvclust_show_signif_gradient(result) %>%
plot(main = "Cluster dendrogram with AU/BP values (%)\n bp values are colored by signif")
dend %>%
pvclust_show_signif_gradient(result) %>%
pvclust_show_signif(result) %>%
plot(main = "Cluster dendrogram with AU/BP values (%)\n bp values are colored+highlighted by signif")
result %>% text
result %>% pvrect(alpha=0.95)
```
### circlize
Circular layout is an efficient way for the visualization of huge amounts of information. The circlize package provides an implementation of circular layout generation in R, including a solution for dendrogram objects produced using dendextend:
```{r}
library(circlize)
dend <- iris[1:40,-5] %>% dist %>% hclust %>% as.dendrogram %>%
set("branches_k_color", k=3) %>% set("branches_lwd", c(5,2,1.5)) %>%
set("branches_lty", c(1,1,3,1,1,2)) %>%
set("labels_colors") %>% set("labels_cex", c(.6,1.5)) %>%
set("nodes_pch", 19) %>% set("nodes_col", c("orange", "black", "plum", NA))
par(mar = rep(0,4))
circlize_dendrogram(dend)
# circlize_dendrogram(dend, labels = FALSE)
# circlize_dendrogram(dend, facing = "inside", labels = FALSE)
```
The above is a wrapper for functions in circlize. An advantage for using the circlize package directly is for plotting a circular dendrogram so that you can add more graphics for the elements in the tree just by adding more tracks using \link[circlize]{circos.track}. For example:
```{r}
# dend <- iris[1:40,-5] %>% dist %>% hclust %>% as.dendrogram %>%
# set("branches_k_color", k=3) %>% set("branches_lwd", c(5,2,1.5)) %>%
# set("branches_lty", c(1,1,3,1,1,2)) %>%
# set("labels_colors") %>% set("labels_cex", c(.9,1.2)) %>%
# set("nodes_pch", 19) %>% set("nodes_col", c("orange", "black", "plum", NA))
set.seed(2015-07-10)
# In the following we get the dendrogram but can also get extra information on top of it
circos.initialize("foo", xlim = c(0, 40))
circos.track(ylim = c(0, 1), panel.fun = function(x, y) {
circos.rect(1:40-0.8, rep(0, 40), 1:40-0.2, runif(40), col = rand_color(40), border = NA)
}, bg.border = NA)
circos.track(ylim = c(0, 1), panel.fun = function(x, y) {
circos.text(1:40-0.5, rep(0, 40), labels(dend), col = labels_colors(dend),
facing = "clockwise", niceFacing = TRUE, adj = c(0, 0.5))
}, bg.border = NA, track.height = 0.1)
max_height = attr(dend, "height")
circos.track(ylim = c(0, max_height), panel.fun = function(x, y) {
circos.dendrogram(dend, max_height = max_height)
}, track.height = 0.5, bg.border = NA)
circos.clear()
```
Comparing two dendrograms
--------------------------
### dendlist
A `dendlist` is a function which produces the dendlist class. It accepts several dendrograms and/or dendlist objects and chain them all together. This function aim to help with the usability of comparing two or more dendrograms.
```{r}
dend15 <- c(1:5) %>% dist %>% hclust(method = "average") %>% as.dendrogram
dend15 <- dend15 %>% set("labels_to_char")
dend51 <- dend15 %>% set("labels", as.character(5:1)) %>% match_order_by_labels(dend15)
dends_15_51 <- dendlist(dend15, dend51)
dends_15_51
head(dends_15_51)
```
The function `match_order_by_labels` makes sure that the order in the leaves corresponds to the same labels in both trees.
### dend_diff
The `dend_diff` function plots two trees side by side, highlighting edges unique to each tree in red, it relies on the `distinct_edges` function.
For example:
```{r}
# example 1
x <- 1:5 %>% dist %>% hclust %>% as.dendrogram
y <- set(x, "labels", 5:1)
# example 2
dend1 <- 1:10 %>% dist %>% hclust %>% as.dendrogram
dend2 <- dend1 %>% set("labels", c(1,3,2,4, 5:10) )
dend_diff(dend1, dend2)
```
See the `highlight_distinct_edges` function for more control over how to create the distinction (color, line width, line type).
### tanglegram
A tanglegram plot gives two dendrogram (with the same set of labels), one facing the other,
and having their labels connected by lines. Tanglegram can be used for visually comparing
two methods of Hierarchical clustering, and are sometimes used in biology when comparing
two phylogenetic trees.
Here is an example of creating a tanglegram using dendextend:
```{r, fig.width=5, fig.height=3}
tanglegram(dends_15_51)
# Same as using:
# plot(dends_15_51) # since there is a plot method for dendlist
# and also:
# tanglegram(dend15, dend51)
```
Notice how "unique" nodes are highlighted with dashed lines (i.e.: nodes which contains a combination of labels/items, which are not present in the other tree). This can be turned off using `highlight_distinct_edges = FALSE`.
Also notice how the connecting lines are colored to highlight two sub-trees which are present in both dendrograms. This can be turned off by setting `common_subtrees_color_lines = FALSE`. We can also color the branches of the trees to show the two common sub-trees using `common_subtrees_color_branches = TRUE`:
```{r, fig.width=5, fig.height=3}
tanglegram(dends_15_51, common_subtrees_color_branches = TRUE)
```
We may wish to improve the layout of the trees. For this we have the `entanglement`, to measure the quality of the alignment of the two trees in the tanglegram layout, and the `untangle` function, for improving it.
```{r}
dends_15_51 %>% entanglement # lower is better
# dends_15_51 %>% untangle(method = "DendSer") %>% entanglement # lower is better
dends_15_51 %>% untangle(method = "step1side") %>% entanglement # lower is better
```
Notice that just because we can get two trees to have horizontal connecting lines, it doesn't mean these trees are identical (or even very similar topologically):
```{r, fig.width=5, fig.height=3}
dends_15_51 %>% untangle(method = "step1side") %>%
tanglegram(common_subtrees_color_branches = TRUE)
```
Entanglement is measured by giving the left tree's labels the values of 1 till tree size, and than match these numbers with the right tree. Now, entanglement is the L norm distance between these two vectors.
That is, we take the sum of the absolute difference (each one in the power of L). e.g: `sum(abs(x-y)**L)`.
And this is divided by the "worst case" entanglement level (e.g: when the right tree is the complete reverse of the left tree).
L tells us which penalty level we are at (L0, L1, L2, partial L's etc). L>1 means that we give a big penalty for sharp angles. While L->0 means that any time something is not a straight horizontal line, it gets a large penalty If L=0.1 it means that we much prefer straight lines over non straight lines
Finding an optimal rotation for the tanglegram of two dendrogram is a hard problem. This problem is also harder for larger trees.
Let's see how well some untangle methods can do.
Without doing anything:
```{r, fig.width=5, fig.height=3}
x <- dends_15_51
x %>% plot(main = paste("entanglement =", round(entanglement(x), 2)))
```
Using DendSer:
```{r, fig.width=5, fig.height=3}
# x <- dends_15_51 %>% untangle(method = "DendSer")
x <- dends_15_51 %>% untangle(method = "ladderize")
x %>% plot(main = paste("entanglement =", round(entanglement(x), 2)))
```
One solution for improving the tanglegram would be to randomly search the rotated tree space for a better solution. Here is how to use a random search:
```{r, fig.width=5, fig.height=3}
set.seed(3958)
x <- dends_15_51 %>% untangle(method = "random", R = 10)
x %>% plot(main = paste("entanglement =", round(entanglement(x), 2)))
```
We can see we already got something better. An advantage of the random search is the ability to create many many trees and compare them to find the best pair.
Let's use a greedy forward step wise rotation of the two trees (first the left, then the right, and so on), to see if we can find a better solution for comparing the two trees. Notice that this may take some time to run (the larger the tree, the longer it would take), but we can limit the search for smaller k's, and see what improvement that can bring us using step2side (slowest):
```{r, fig.width=5, fig.height=3}
x <- dends_15_51 %>% untangle(method = "step2side")
x %>% plot(main = paste("entanglement =", round(entanglement(x), 2)))
```
We got perfect entanglement (0).
### Correlation measures
We shall use the following for the upcoming examples:
```{r}
set.seed(23235)
ss <- sample(1:150, 10 )
dend1 <- iris[ss,-5] %>% dist %>% hclust("com") %>% as.dendrogram
dend2 <- iris[ss,-5] %>% dist %>% hclust("single") %>% as.dendrogram
dend3 <- iris[ss,-5] %>% dist %>% hclust("ave") %>% as.dendrogram
dend4 <- iris[ss,-5] %>% dist %>% hclust("centroid") %>% as.dendrogram
dend1234 <- dendlist("Complete" = dend1, "Single" = dend2, "Average" = dend3, "Centroid" = dend4)
par(mfrow = c(2,2))
plot(dend1, main = "Complete")
plot(dend2, main = "Single")
plot(dend3, main = "Average")
plot(dend4, main = "Centroid")
```
#### Global Comparison of two (or more) dendrograms
The `all.equal.dendrogram` function makes a global comparison of two or more dendrograms trees.
```{r}
all.equal(dend1, dend1)
all.equal(dend1, dend2)
all.equal(dend1, dend2, use.edge.length = FALSE)
all.equal(dend1, dend2, use.edge.length = FALSE, use.topology = FALSE)
all.equal(dend2, dend4, use.edge.length = TRUE)
all.equal(dend2, dend4, use.edge.length = FALSE)
all.equal(dendlist(dend1, dend1, dend1))
all.equal(dend1234)
all.equal(dend1234, use.edge.length = FALSE)
```
#### Distance matrix using dist.dendlist
The `dist.dendlist` function computes the Robinson-Foulds distance (also known as symmetric difference) between two dendrograms. This is the sum of edges in both trees with labels that exist in only one of the two trees (i.e.: the length of `distinct_edges`).
```{r}
x <- 1:5 %>% dist %>% hclust %>% as.dendrogram
y <- set(x, "labels", 5:1)
dist.dendlist(dendlist(x1 = x,x2 = x,y1 = y))
dend_diff(x,y)
dist.dendlist(dend1234)
```
This function might implement other topological distances in the future.
#### Correlation matrix using cor.dendlist
Both Baker's Gamma and cophenetic correlation (Which will be introduced shortly), can be calculated to create a correlation matrix using the `cor.dendlist` function (the default method is cophenetic correlation):
```{r}
cor.dendlist(dend1234)
```
The corrplot library offers a nice visualization:
```{r}
library(corrplot)
corrplot(cor.dendlist(dend1234), "pie", "lower")
```
Which easily tells us that single, average and centroid give similar results, while complete is somewhat different.
```{r, fig.width=5, fig.height=3}
# same subtrees, so there is no need to color the branches
dend1234 %>% tanglegram(which = c(2,3))
# Here the branches colors are very helpful:
dend1234 %>% tanglegram(which = c(1,2),
common_subtrees_color_branches = TRUE)
```
#### Baker's Gamma Index
Baker's Gamma Index (see baker's paper from 1974) is a measure of association (similarity)
between two trees of Hierarchical clustering (dendrograms). It is defined as the rank correlation between the stages at which pairs of objects combine in each of the two trees.
Or more detailed: It is calculated by taking two items, and see what is the highest
possible level of k (number of cluster groups created when cutting the tree)
for which the two item still belongs to the same tree. That k is returned,
and the same is done for these two items for the second tree.
There are n over 2 combinations of such pairs of items from the items in
the tree, and all of these numbers are calculated for each of the two trees.
Then, these two sets of numbers (a set for the items in each tree)
are paired according to the pairs of items compared, and a Spearman
correlation is calculated.
The value can range between -1 to 1. With near 0 values meaning that
the two trees are not statistically similar.
For exact p-value one should use a permutation test. One such option
will be to permute over the labels of one tree many times, calculating
the distribution under the null hypothesis (keeping the trees topologies
constant).
Notice that this measure is not affected by the height of a branch but only
of its relative position compared with other branches.
```{r}
cor_bakers_gamma(dend15, dend51)
```
Even that we can reach perfect entanglement, Baker's gamma shows us that the tree's topology is not identical. As opposed with the correlation of a tree with itself:
```{r}
cor_bakers_gamma(dend15, dend15)
```
Since the observations creating the Baker's Gamma Index of such a measure are correlated, we need to perform a permutation test for the calculation of the statistical significance of the index. Let's look at the distribution of Baker's Gamma Index under the null hypothesis (assuming fixed tree topologies). This will be different for different tree structures and sizes. Here are the results when the compared tree is itself (after shuffling its own labels), and when comparing tree 1 to the shuffled tree 2:
```{r}
set.seed(23235)
the_cor <- cor_bakers_gamma(dend15, dend15)
the_cor2 <- cor_bakers_gamma(dend15, dend51)
the_cor
the_cor2
R <- 100
cor_bakers_gamma_results <- numeric(R)
dend_mixed <- dend15
for(i in 1:R) {
dend_mixed <- sample.dendrogram(dend_mixed, replace = FALSE)
cor_bakers_gamma_results[i] <- cor_bakers_gamma(dend15, dend_mixed)
}
plot(density(cor_bakers_gamma_results),
main = "Baker's gamma distribution under H0",
xlim = c(-1,1))
abline(v = 0, lty = 2)
abline(v = the_cor, lty = 2, col = 2)
abline(v = the_cor2, lty = 2, col = 4)
legend("topleft", legend = c("cor", "cor2"), fill = c(2,4))
round(sum(the_cor2 < cor_bakers_gamma_results)/ R, 4)
title(sub = paste("One sided p-value:",
"cor =", round(sum(the_cor < cor_bakers_gamma_results)/ R, 4),
" ; cor2 =", round(sum(the_cor2 < cor_bakers_gamma_results)/ R, 4)
))
```
We can see that we do not have enough evidence that dend15 and dend51 are significantly "similar" (i.e.: with a correlation larger than 0).
We can also build a bootstrap confidence interval, using `sample.dendrogram`, for the correlation. This function can be very slow for larger trees, so make sure you use if carefully:
```{r, warning=FALSE}
dend1 <- dend15
dend2 <- dend51
set.seed(23801)
R <- 100
dend1_labels <- labels(dend1)
dend2_labels <- labels(dend2)
cor_bakers_gamma_results <- numeric(R)
for(i in 1:R) {
sampled_labels <- sample(dend1_labels, replace = TRUE)
# members needs to be fixed since it will be later used in nleaves
dend_mixed1 <- sample.dendrogram(dend1,
dend_labels=dend1_labels,
fix_members=TRUE,fix_order=TRUE,fix_midpoint=FALSE,
replace = TRUE, sampled_labels=sampled_labels
)
dend_mixed2 <- sample.dendrogram(dend2, dend_labels=dend2_labels,
fix_members=TRUE,fix_order=TRUE,fix_midpoint=FALSE,
replace = TRUE, sampled_labels=sampled_labels
)
cor_bakers_gamma_results[i] <- cor_bakers_gamma(dend_mixed1, dend_mixed2, warn = FALSE)
}
# here is the tanglegram
tanglegram(dend1, dend2)
# And here is the tanglegram for one sample of our trees:
dend_mixed1 <- rank_order.dendrogram(dend_mixed1)
dend_mixed2 <- rank_order.dendrogram(dend_mixed2)
dend_mixed1 <- fix_members_attr.dendrogram(dend_mixed1)
dend_mixed2 <- fix_members_attr.dendrogram(dend_mixed2)
tanglegram(dend_mixed1, dend_mixed2)
cor_bakers_gamma(dend_mixed1, dend_mixed2, warn = FALSE)
CI95 <- quantile(cor_bakers_gamma_results, probs=c(.025,.975))
CI95
par(mfrow = c(1,1))
plot(density(cor_bakers_gamma_results),
main = "Baker's gamma bootstrap distribution",
xlim = c(-1,1))
abline(v = CI95, lty = 2, col = 3)
abline(v = cor_bakers_gamma(dend1, dend2), lty = 2, col = 2)
legend("topleft", legend =c("95% CI", "Baker's Gamma Index"), fill = c(3,2))
```
The bootstrap sampling can do weird things with small trees. In this case we had many times that the two trees got perfect correlation. The usage and interpretation should be done carefully!
#### Cophenetic correlation
The cophenetic distance between two observations that have been clustered is defined to be the inter-group dissimilarity at which the two observations are first combined into a single cluster. This distance has many ties and restrictions. The cophenetic correlation (see sokal 1962) is the correlation between two cophenetic distance matrices of two trees.
The value can range between -1 to 1. With near 0 values meaning that the two trees are not statistically similar. For exact p-value one should result to a permutation test. One such option will be to permute over the labels of one tree many times, and calculating the distribution under the null hypothesis (keeping the trees topologies constant).
```{r}
cor_cophenetic(dend15, dend51)
```
The function `cor_cophenetic` is faster than `cor_bakers_gamma`, and might be preferred for that reason.
### The Fowlkes-Mallows Index and the Bk plot
#### The Fowlkes-Mallows Index
The Fowlkes-Mallows Index (see fowlkes 1983) (FM Index, or Bk) is a measure of similarity between two clusterings. The FM index ranges from 0 to 1, a higher value indicates a greater similarity between the two clusters.
The dendextend package allows the calculation of FM-Index, its expectancy and variance under the null hypothesis, and a creation of permutations of the FM-Index under H0. Thanks to the profdpm package, we have another example of calculating the FM (though it does not offer the expectancy and variance under H0):
```{r}
hc1 <- hclust(dist(iris[,-5]), "com")
hc2 <- hclust(dist(iris[,-5]), "single")
# FM index of a cluster with himself is 1:
FM_index(cutree(hc1, k=3), cutree(hc1, k=3))
# FM index of two clusterings:
FM_index(cutree(hc1, k=3), cutree(hc2, k=3))
# we got a value far above the expected under H0
# Using the R code:
FM_index_R(cutree(hc1, k=3), cutree(hc2, k=3))
```
The E_FM and V_FM are the values expected under the null hypothesis that the two trees have the same topology but one is a random shuffle of the labels of the other (i.e.: "no connection" between the trees).
So for the values:
```{r}
FM_index(cutree(hc1, k=3), cutree(hc2, k=3))
```
We can take (under a normal asymptotic distribution)
```{r}
0.4462 + 1.645 * sqrt(6.464092e-05)
```
And since 0.8059 (our value) > 0.4594 (the critical value under H0, with alpha=5% for a one sided test) - then we can say that we significantly reject the hypothesis that the two trees are "not-similar".
#### The Bk plot
In the Bk method we calculate the FM Index (Bk) for each k (k=2,3,...,n-1) number of clusters, giving the association between the two trees when each is cut to have k groups. The similarity between two hierarchical clustering dendrograms, can be investigated, using the (k,Bk) plot: For every level of splitting of the two dendrograms which produces k clusters in each tree, the plot shows the number Bk, and therefore enables the investigation of potential nuances in the structure of similarity. The Bk measures the number of pairs of items which are in the same cluster in both dendrograms, one of the clusters in one of the trees and one of the clusters in the other tree, divided by the geometric mean of the number of pairs of items which are in the same cluster in each tree. Namely, ${a_{uv}} = 1\left( {or{\rm{ }}{{\rm{b}}_{uv}} = 1} \right)$ if the items u and v are in the same cluster in the first tree (second tree), when it is cut so to give k clusters, and otherwise 0:
\[{FM_k} = {B_k} = \frac{{\sum\limits_{}^{} {{a_{uv}}{b_{uv}}} }}{{\sqrt {\sum\limits_{}^{} {{a_{uv}}} \sum\limits_{}^{} {{b_{uv}}} } }}\]
The Bk measure can be plotted for every value of k (except k=n) in order to create the "(k,Bk) plot". The plot compares the similarity of the two trees for different cuts. The mean and variance of Bk, under the null hypothesis (that the two trees are not "similar"), and under the assumption that the margins of the matching matrix are fixed, are given in Fowlkes and Mallows (see fowlkes 1983). They allow making inference on whether the results obtained are different from what would have been expected under the null hypothesis (of now particular order of the trees' labels).
The `Bk` and the `Bk_plot` functions allow the calculation of the FM-Index for a range of k values on two trees. Here are examples:
```{r}
set.seed(23235)
ss <- TRUE # sample(1:150, 30 ) # TRUE #
hc1 <- hclust(dist(iris[ss,-5]), "com")
hc2 <- hclust(dist(iris[ss,-5]), "single")
dend1 <- as.dendrogram(hc1)
dend2 <- as.dendrogram(hc2)
# cutree(tree1)
# It works the same for hclust and dendrograms:
Bk(hc1, hc2, k = 3)
Bk(dend1, dend2, k = 3)
```
The Bk plot:
```{r, warning=FALSE}
Bk_plot(hc1, hc2, main = "WRONG Bk plot \n(due to the way cutree works with ties in hclust)", warn = FALSE)
Bk_plot(dend1, dend2, main = "CORRECT Bk plot \n(based on dendrograms)")
```
Session info
=============
```{r, cache=FALSE}
sessionInfo()
```
|