File: get_subdendrograms.R

package info (click to toggle)
r-cran-dendextend 1.16.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 2,936 kB
  • sloc: sh: 13; makefile: 2
file content (148 lines) | stat: -rw-r--r-- 5,243 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#' @title Extract a list of \emph{k} subdendrograms from a given dendrogram
#' object
#' @export
#' @description
#' Extracts a list (\link{dendlist}) of subdendrogram structures based on the cutree \code{\link{cutree.dendrogram}} function
#' from a given dendrogram object. It can be useful in case we're interested in a visual investigation of 
#' specific clustering results.
#' @param dend a dendrogram object
#' @param k the number of subdendrograms that should be extracted
#' @param order_clusters_as_data passed to \link[dendextend]{cutree}, default is FALSE 
#' (while the cutree default is TRUE). The reason is since it's easier to look at the dendrogram plot
#' and then get subtrees that are in the same order is in the plot/dendrogram object.
#' This is in contrast to more traditional use of cutree, where it is used with the original order or rows from the data.
#' @param ... parameters that should be passed to the cutree
#' \code{\link{cutree.dendrogram}}
#' @return
#' A list of \emph{k} subdendrograms, based on the cutree
#' \code{\link{cutree.dendrogram}} clustering
#' clusters.
#' @examples
#'
#' # needed packages:
#' # install.packages(gplots)
#' # install.packages(viridis)
#' # install.packages(devtools)
#' # devtools::install_github('talgalili/dendextend') #' dendextend from github
#' 
#' # define dendrogram object to play with:
#' dend <- iris[1:20, -5] %>%
#'   dist() %>%
#'   hclust() %>%
#'   as.dendrogram() %>%
#'   # set("labels_to_character") %>%
#'   color_branches(k = 5)
#' labels(dend) <- letters[1:20]
#' plot(dend)
#' dend_list <- get_subdendrograms(dend, 5)
#' lapply(dend_list, labels)
#' # [[1]]
#' # [1] "a" "b"
#' # 
#' # [[2]]
#' # [1] "c" "d" "e" "f" "g"
#' # 
#' # [[3]]
#' # [1] "h" "i"
#' # 
#' # [[4]]
#' # [1] "j" "k" "l" "m"
#' # 
#' # [[5]]
#' # [1] "n" "o" "p" "q" "r" "s" "t"
#' 
#' # define dendrogram object to play with:
#' dend <- iris[, -5] %>%
#'   dist() %>%
#'   hclust() %>%
#'   as.dendrogram() %>%
#'   set("labels_to_character") %>%
#'   color_branches(k = 5)
#' dend_list <- get_subdendrograms(dend, 5)
#'
#' # Plotting the result
#' par(mfrow = c(2, 3))
#' plot(dend, main = "Original dendrogram")
#' sapply(dend_list, plot)
#'
#' # plot a heatmap of only one of the sub dendrograms
#' par(mfrow = c(1, 1))
#' library(gplots)
#' sub_dend <- dend_list[[1]] #' get the sub dendrogram
#' # make sure of the size of the dend
#' nleaves(sub_dend)
#' length(order.dendrogram(sub_dend))
#' # get the subset of the data
#' subset_iris <- as.matrix(iris[order.dendrogram(sub_dend), -5])
#' # update the dendrogram's internal order so to not cause an error in heatmap.2
#' order.dendrogram(sub_dend) <- as.integer(rank(order.dendrogram(sub_dend)))
#' heatmap.2(subset_iris, Rowv = sub_dend, trace = "none", col = viridis::viridis(100))
get_subdendrograms <- function(dend, k, order_clusters_as_data = FALSE, ...) {
  clusters <- cutree(dend, k, order_clusters_as_data = order_clusters_as_data, ...)
  dend_list <- lapply(unique(clusters), function(cluster.id) {
    find_dendrogram(dend, names(which(clusters == cluster.id)))
  })
  class(dend_list) <- "dendlist"
  dend_list
}

#' @title Search for the sub-dendrogram structure composed of selected labels
#' @export
#' @description
#' Given a dendrogram object, the function performs a recursive DFS algorithm to determine
#' the sub-dendrogram which is composed of (exactly) all 'selected_labels'.
#' @param dend a dendrogram object
#' @param selected_labels A character vector with the labels we expect to have 
#' in the sub-dendrogram. This doesn't have to be in the same order as in the dendrogram.
#' @return
#' Either a sub-dendrogram composed of only members of selected_labels.
#' If such a sub-dendrogram doesn't exist, the function returns NULL.
#' @examples
#'
#' \dontrun{
#' # define dendrogram object to play with:
#' dend <- iris[, -5] %>%
#'   dist() %>%
#'   hclust() %>%
#'   as.dendrogram() %>%
#'   set("labels_to_character") %>%
#'   color_branches(k = 5)
#' first.subdend.only <- names(cutree(dend, 4)[cutree(dend, 4) == 1])
#' sub.dend <- find_dendrogram(dend, first.subdend.only)
#' # Plotting the result
#' par(mfrow = c(1, 2))
#' plot(dend, main = "Original dendrogram")
#' plot(sub.dend, main = "First subdendrogram")
#' 
#'   dend <- 1:10 %>%
#' dist() %>%
#'   hclust() %>%
#'   as.dendrogram() %>%
#'   set("labels_to_character") %>%
#'   color_branches(k = 5)
#' 
#' selected_labels <- as.character(1:4)
#' sub_dend <- find_dendrogram(dend, selected_labels)
#' plot(dend, main = "Original dendrogram")
#' plot(sub_dend, main = "First subdendrogram")
#' 
#' 
#' }
#'
find_dendrogram <- function(dend, selected_labels) {
  # if the dendrogram is exactly the labels in selected_labels - then we found our dend 
  if (all(labels(dend) %in% selected_labels) && 
      (length(labels(dend)) == length(selected_labels))) {
    return(dend)
  }

  # if not, either we can find such a sub dendrogram, or it doesn't exist (return NULL)
  for(i in 1:length(dend)) {
    if(all(selected_labels %in% labels(dend[[i]]))) {
      return(Recall(dend[[i]], selected_labels))
    }
  }
  # if we couldn't find any sub-dend that includes all the labels we're looking for
  # then we return NULL
  return(NULL)
}