1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
#' @title Extract a list of \emph{k} subdendrograms from a given dendrogram
#' object
#' @export
#' @description
#' Extracts a list (\link{dendlist}) of subdendrogram structures based on the cutree \code{\link{cutree.dendrogram}} function
#' from a given dendrogram object. It can be useful in case we're interested in a visual investigation of
#' specific clustering results.
#' @param dend a dendrogram object
#' @param k the number of subdendrograms that should be extracted
#' @param order_clusters_as_data passed to \link[dendextend]{cutree}, default is FALSE
#' (while the cutree default is TRUE). The reason is since it's easier to look at the dendrogram plot
#' and then get subtrees that are in the same order is in the plot/dendrogram object.
#' This is in contrast to more traditional use of cutree, where it is used with the original order or rows from the data.
#' @param ... parameters that should be passed to the cutree
#' \code{\link{cutree.dendrogram}}
#' @return
#' A list of \emph{k} subdendrograms, based on the cutree
#' \code{\link{cutree.dendrogram}} clustering
#' clusters.
#' @examples
#'
#' # needed packages:
#' # install.packages(gplots)
#' # install.packages(viridis)
#' # install.packages(devtools)
#' # devtools::install_github('talgalili/dendextend') #' dendextend from github
#'
#' # define dendrogram object to play with:
#' dend <- iris[1:20, -5] %>%
#' dist() %>%
#' hclust() %>%
#' as.dendrogram() %>%
#' # set("labels_to_character") %>%
#' color_branches(k = 5)
#' labels(dend) <- letters[1:20]
#' plot(dend)
#' dend_list <- get_subdendrograms(dend, 5)
#' lapply(dend_list, labels)
#' # [[1]]
#' # [1] "a" "b"
#' #
#' # [[2]]
#' # [1] "c" "d" "e" "f" "g"
#' #
#' # [[3]]
#' # [1] "h" "i"
#' #
#' # [[4]]
#' # [1] "j" "k" "l" "m"
#' #
#' # [[5]]
#' # [1] "n" "o" "p" "q" "r" "s" "t"
#'
#' # define dendrogram object to play with:
#' dend <- iris[, -5] %>%
#' dist() %>%
#' hclust() %>%
#' as.dendrogram() %>%
#' set("labels_to_character") %>%
#' color_branches(k = 5)
#' dend_list <- get_subdendrograms(dend, 5)
#'
#' # Plotting the result
#' par(mfrow = c(2, 3))
#' plot(dend, main = "Original dendrogram")
#' sapply(dend_list, plot)
#'
#' # plot a heatmap of only one of the sub dendrograms
#' par(mfrow = c(1, 1))
#' library(gplots)
#' sub_dend <- dend_list[[1]] #' get the sub dendrogram
#' # make sure of the size of the dend
#' nleaves(sub_dend)
#' length(order.dendrogram(sub_dend))
#' # get the subset of the data
#' subset_iris <- as.matrix(iris[order.dendrogram(sub_dend), -5])
#' # update the dendrogram's internal order so to not cause an error in heatmap.2
#' order.dendrogram(sub_dend) <- as.integer(rank(order.dendrogram(sub_dend)))
#' heatmap.2(subset_iris, Rowv = sub_dend, trace = "none", col = viridis::viridis(100))
get_subdendrograms <- function(dend, k, order_clusters_as_data = FALSE, ...) {
clusters <- cutree(dend, k, order_clusters_as_data = order_clusters_as_data, ...)
dend_list <- lapply(unique(clusters), function(cluster.id) {
find_dendrogram(dend, names(which(clusters == cluster.id)))
})
class(dend_list) <- "dendlist"
dend_list
}
#' @title Search for the sub-dendrogram structure composed of selected labels
#' @export
#' @description
#' Given a dendrogram object, the function performs a recursive DFS algorithm to determine
#' the sub-dendrogram which is composed of (exactly) all 'selected_labels'.
#' @param dend a dendrogram object
#' @param selected_labels A character vector with the labels we expect to have
#' in the sub-dendrogram. This doesn't have to be in the same order as in the dendrogram.
#' @return
#' Either a sub-dendrogram composed of only members of selected_labels.
#' If such a sub-dendrogram doesn't exist, the function returns NULL.
#' @examples
#'
#' \dontrun{
#' # define dendrogram object to play with:
#' dend <- iris[, -5] %>%
#' dist() %>%
#' hclust() %>%
#' as.dendrogram() %>%
#' set("labels_to_character") %>%
#' color_branches(k = 5)
#' first.subdend.only <- names(cutree(dend, 4)[cutree(dend, 4) == 1])
#' sub.dend <- find_dendrogram(dend, first.subdend.only)
#' # Plotting the result
#' par(mfrow = c(1, 2))
#' plot(dend, main = "Original dendrogram")
#' plot(sub.dend, main = "First subdendrogram")
#'
#' dend <- 1:10 %>%
#' dist() %>%
#' hclust() %>%
#' as.dendrogram() %>%
#' set("labels_to_character") %>%
#' color_branches(k = 5)
#'
#' selected_labels <- as.character(1:4)
#' sub_dend <- find_dendrogram(dend, selected_labels)
#' plot(dend, main = "Original dendrogram")
#' plot(sub_dend, main = "First subdendrogram")
#'
#'
#' }
#'
find_dendrogram <- function(dend, selected_labels) {
# if the dendrogram is exactly the labels in selected_labels - then we found our dend
if (all(labels(dend) %in% selected_labels) &&
(length(labels(dend)) == length(selected_labels))) {
return(dend)
}
# if not, either we can find such a sub dendrogram, or it doesn't exist (return NULL)
for(i in 1:length(dend)) {
if(all(selected_labels %in% labels(dend[[i]]))) {
return(Recall(dend[[i]], selected_labels))
}
}
# if we couldn't find any sub-dend that includes all the labels we're looking for
# then we return NULL
return(NULL)
}
|