1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
# Copyright (C) Tal Galili
#
# This file is part of dendextend.
#
# dendextend is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# dendextend is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# http://www.r-project.org/Licenses/
#
# Uses distinct_edges to find which nodes are distinct
# And then returns a logical vector indicating for each node
# if it is one in which it, and all of its children, are nodes
# that contain items that are shared (as a group) with those in dend2
# put differently - these are the nodes that form a sub-tree which will be
# identical (topologically) with some subtree in dend2
nodes_with_shared_labels <- function(dend1, dend2, ...) {
distinct_nodes <- distinct_edges(dend1, dend2)
good_nodes <- logical(nnodes(dend1))
i_nodes <- 0
check_if_node_is_good <- function(dend_node) {
i_nodes <<- i_nodes + 1
current_i_nodes <- i_nodes
if (is.leaf(dend_node)) {
good_nodes[current_i_nodes] <<- TRUE
return(TRUE)
}
is_distinct_node <- i_nodes %in% distinct_nodes
n_children <- length(dend_node)
are_children_good <- logical(n_children)
for (i in 1:n_children) {
are_children_good[i] <- check_if_node_is_good(dend_node[[i]])
}
is_good_node <- all(c(are_children_good, !is_distinct_node))
if (is_good_node) good_nodes[current_i_nodes] <<- TRUE
return(is_good_node)
}
check_if_node_is_good(dend1)
good_nodes
}
#' Rank a vector based on clusters
#' @export
#'
#' @param x numeric vector
#' @param ignore0 logical (FALSE). If TRUE, will ignore the 0's in the vector
#' @param ... not used
#'
#' @return
#' an integer vector with the number of unique values
#' as the number of uniques in the original vector.
#' And the values are ranked from 1 (in the beginning of the vector)
#' to the number of unique clusters.
#'
#' @examples
#'
#' rank_values_with_clusters(c(1, 2, 3))
#' rank_values_with_clusters(c(1, 1, 3))
#' rank_values_with_clusters(c(0.1, 0.1, 3000))
#' rank_values_with_clusters(c(3, 1, 2))
#' rank_values_with_clusters(c(1, 3, 3, 3, 3, 3, 3, 4, 2, 2))
#'
#' rank_values_with_clusters(c(3, 1, 2), ignore0 = TRUE)
#' rank_values_with_clusters(c(3, 1, 2), ignore0 = FALSE)
#' rank_values_with_clusters(c(3, 1, 0, 2), ignore0 = TRUE)
#' rank_values_with_clusters(c(3, 1, 0, 2), ignore0 = FALSE)
rank_values_with_clusters <- function(x, ignore0 = FALSE, ...) {
if (ignore0) {
old_x <- x
x <- old_x[old_x != 0]
}
rle_lengths <- rle(x)$lengths
x <- rep(seq_along(rle_lengths), times = rle_lengths)
if (ignore0) {
old_x[old_x != 0] <- x
x <- old_x
}
x
}
replace_unique_items_with_0_and_rank <- function(x, ...) {
# insert zeros
tbl_x <- table(x)
unique_char_values <- names(tbl_x)[tbl_x == 1]
ss_unique <- as.character(x) %in% unique_char_values
x[ss_unique] <- 0
# x # this is cleaned
### # fails:
### x[!ss_unique] <- rank(x[!ss_unique], ties = "min")
# now we rank
x[!ss_unique] <- rank_values_with_clusters(x[!ss_unique])
# rep(1:3, times = c(1,3,3))
# rle(c(1,2,2,3,3,4))
x
}
# replace_unique_items_with_0_and_rank(c(1,2,2,3,3,4))
#' Find clusters of common subtrees
#' @export
#' @description
#' Gets a dend and the output from "nodes_with_shared_labels"
#' and returns a vector (length of labels), indicating the clusters
#' forming shared subtrees
#' @param dend1 a \link{dendrogram}.
#' @param dend2 a \link{dendrogram}.
#' @param leaves_get_0_cluster logical (TRUE). Should the leaves which are not part of
#' a larger common subtree get a unique cluster number, or the value 0.
#' @param ... not used.
#'
#' @return
#' An integer vector, with values indicating which leaves in dend1 form
#' a common subtree cluster, with ones available in dend2
#' @seealso \link{color_branches}, \link{tanglegram}
#'
#' @examples
#'
#'
#' library(dendextend)
#' dend1 <- 1:6 %>%
#' dist() %>%
#' hclust() %>%
#' as.dendrogram()
#' dend2 <- dend1 %>% set("labels", c(1:4, 6:5))
#' tanglegram(dend1, dend2)
#'
#' clusters1 <- common_subtrees_clusters(dend1, dend2)
#' dend1_2 <- color_branches(dend1, clusters = clusters1)
#' plot(dend1_2)
#' plot(dend1_2, horiz = TRUE)
#' tanglegram(dend1_2, dend2, highlight_distinct_edges = FALSE)
#' tanglegram(dend1_2, dend2)
common_subtrees_clusters <- function(dend1, dend2, leaves_get_0_cluster = TRUE, ...) {
good_nodes <- nodes_with_shared_labels(dend1, dend2)
dend <- dend1
clusters <- numeric(nleaves(dend))
cluster_group <- 0
leaf_id <- 0
i_nodes <- 0
fill_clusters <- function(dend_node) {
i_nodes <<- i_nodes + 1
current_node <- i_nodes
if (is.leaf(dend_node)) {
if (!good_nodes[current_node]) cluster_group <<- cluster_group + 1
leaf_id <<- leaf_id + 1
clusters[leaf_id] <<- cluster_group
return(NULL)
}
# If not leaf:
n_children <- length(dend_node)
for (i in 1:n_children) {
if (!good_nodes[current_node]) cluster_group <<- cluster_group + 1
fill_clusters(dend_node[[i]])
}
return(NULL)
}
fill_clusters(dend)
clusters <- rank_values_with_clusters(clusters)
if (leaves_get_0_cluster) {
clusters <- replace_unique_items_with_0_and_rank(clusters)
}
clusters
}
|