1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
# Copyright (C) Tal Galili
#
# This file is part of dendextend.
#
# dendextend is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# dendextend is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# http://www.r-project.org/Licenses/
#
#' @title Correlation matrix between a list of trees.
#' @export
#' @description
#' A correlation matrix between a list of trees.
#'
#' Assumes the labels in the two trees fully match. If they do not
#' please first use \link{intersect_trees} to have them matched.
#'
#' @param dend a \link{dendlist} of trees
#' @param method a character string indicating which correlation coefficient
#' is to be computed. One of "cophenetic" (default), "baker",
#' "common_nodes", or "FM_index".
#' It can be abbreviated.
#' @param ... passed to cor functions.
#'
#' @seealso
#' \link{cophenetic}, \link{cor_cophenetic}, \link{cor_bakers_gamma},
#' \link{cor_common_nodes}, \link{cor_FM_index}
#' @return
#' A correlation matrix between the different trees
#'
#' @examples
#'
#' \dontrun{
#'
#' set.seed(23235)
#' ss <- sample(1:150, 10)
#' dend1 <- iris[ss, -5] %>%
#' dist() %>%
#' hclust("com") %>%
#' as.dendrogram()
#' dend2 <- iris[ss, -5] %>%
#' dist() %>%
#' hclust("single") %>%
#' as.dendrogram()
#' dend3 <- iris[ss, -5] %>%
#' dist() %>%
#' hclust("ave") %>%
#' as.dendrogram()
#' dend4 <- iris[ss, -5] %>%
#' dist() %>%
#' hclust("centroid") %>%
#' as.dendrogram()
#' # cutree(dend1)
#' cors <- cor.dendlist(dendlist(d1 = dend1, d2 = dend2, d3 = dend3, d4 = dend4))
#'
#' cors
#'
#' # a nice plot for them:
#' library(corrplot)
#' corrplot(cor.dendlist(dend1234), "pie", "lower")
#' }
cor.dendlist <- function(dend, method = c("cophenetic", "baker", "common_nodes", "FM_index"), ...) {
if (!is.dendlist(dend)) stop("dend needs to be a dendlist object")
method <- match.arg(method)
n_list <- length(dend)
the_cor <- matrix(1, n_list, n_list)
pairwise_combn <- combn(n_list, 2)
for (i in 1:ncol(pairwise_combn)) {
l1 <- pairwise_combn[1, i]
l2 <- pairwise_combn[2, i]
the_cor[l1, l2] <- the_cor[l2, l1] <-
switch(method,
cophenetic = cor_cophenetic(dend[[l1]], dend[[l2]], ...),
baker = cor_bakers_gamma(dend[[l1]], dend[[l2]], ...),
common_nodes = cor_common_nodes(dend[[l1]], dend[[l2]], ...),
FM_index = cor_FM_index(dend[[l1]], dend[[l2]], ...)
)
}
rownames(the_cor) <- colnames(the_cor) <- names(dend)
the_cor
}
# edgeset_dist
#' Proportion of commong nodes between two trees
#' @export
#' @description
#' Calculates the number of nodes, in each tree, that are common (i.e.: that have the same exact list of labels).
#' The correlation is between 0 (actually, 2*(nnodes-1)/(2*nnodes), for two trees with
#' the same list of labels - since the top node will always be identical for them).
#' Where 1 means that every node in the one tree, has a node in the other tree with the exact
#' same list of labels.
#' Notice this measure is non-parameteric (it ignores the heights and relative position of the nodes).
#'
#' @param dend1 a dendrogram.
#' @param dend2 a dendrogram.
#' @param ... not used.
#'
#' @return
#' A correlation value between 0 to 1 (almost identical trees)
#' @seealso \link{distinct_edges}, \link{cor.dendlist}
#'
#' @examples
#'
#' set.seed(23235)
#' ss <- sample(1:150, 10)
#' hc1 <- iris[ss, -5] %>%
#' dist() %>%
#' hclust("com")
#' hc2 <- iris[ss, -5] %>%
#' dist() %>%
#' hclust("single")
#' dend1 <- as.dendrogram(hc1)
#' dend2 <- as.dendrogram(hc2)
#'
#' cor_cophenetic(dend1, dend2)
#' cor_common_nodes(dend1, dend2)
#' tanglegram(dend1, dend2)
#' # we can see we have only two nodes which are different...
cor_common_nodes <- function(dend1, dend2, ...) {
# dendextend:::edgeset_dist
n_diff_nodes <- edgeset_dist(dend1, dend2)
nnodes_trees <- nnodes(dend1) + nnodes(dend2)
(nnodes_trees - n_diff_nodes) / nnodes_trees
}
#' Correlation of FM_index for some k
#' @export
#' @description
#' Calculates the FM_index Correlation for some k.
#'
#'
#' @param dend1 a dendrogram.
#' @param dend2 a dendrogram.
#' @param k an integer (number of clusters to cut the tree)
#' @param ... not used.
#'
#' @return
#' A correlation value between 0 to 1 (almost identical clusters for some k)
#' @seealso \link{FM_index}, \link{cor.dendlist}, \link{Bk}
#'
#' @examples
#'
#' set.seed(23235)
#' ss <- sample(1:150, 10)
#' hc1 <- iris[ss, -5] %>%
#' dist() %>%
#' hclust("com")
#' hc2 <- iris[ss, -5] %>%
#' dist() %>%
#' hclust("single")
#' dend1 <- as.dendrogram(hc1)
#' dend2 <- as.dendrogram(hc2)
#'
#' cor_FM_index(dend1, dend2, k = 2)
#' cor_FM_index(dend1, dend2, k = 3)
#' cor_FM_index(dend1, dend2, k = 4)
cor_FM_index <- function(dend1, dend2, k, ...) {
if (missing(k)) stop("You need to specifiy k.")
# dendextend:::edgeset_dist
clus1 <- cutree(dend1, k = k)[order.dendrogram(dend1)]
clus2 <- cutree(dend2, k = k)[order.dendrogram(dend2)]
if (all(clus1 == 0) | all(clus2 == 0)) {
warning("Can't calculate k - returning NA")
return(NA)
}
FM_index(clus1, clus2, assume_sorted_vectors = TRUE)
}
|