1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
# Copyright (C) Tal Galili
#
# This file is part of dendextend.
#
# dendextend is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# dendextend is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# http://www.r-project.org/Licenses/
#
#' @title Sorts a distance matrix by rows and columns names
#' @description Sorts a distance matrix by the names of the rows and columns.
#' @export
#' @param dist_mat a distance matrix.
#' @param by_rows logical (TRUE). Sort the distance matrix by rows?
#' @param by_cols logical (TRUE). Sort the distance matrix by columns?
#' @param ... Ignored.
#' @seealso
#' \link{dist}, \link{cor_cophenetic}
#' @return
#' A distance matrix (after sorting)
#'
sort_dist_mat <- function(dist_mat, by_rows = TRUE, by_cols = TRUE, ...) {
dist1 <- as.matrix(dist_mat)
if (by_rows) dist1 <- dist1[order(rownames(dist1)), ]
if (by_cols) dist1 <- dist1[, order(colnames(dist1))]
dist1 <- as.dist(dist1)
attributes(dist1)[c("Diag", "Upper")] <- attributes(dist_mat)[c("Diag", "Upper")]
dist1
}
#' @title Cophenetic correlation between two trees
#' @name cor_cophenetic
#' @export
#' @description
#' Cophenetic correlation coefficient for two trees.
#'
#' Assumes the labels in the two trees fully match. If they do not
#' please first use \link{intersect_trees} to have them matched.
#'
#'
#' @param dend1 a tree (dendrogram/hclust/phylo, or dendlist)
#' @param dend2 Either a tree (dendrogram/hclust/phylo), or a \link{dist} object (for example, from the original data matrix).
#' @param which an integer vector of length 2, indicating
#' which of the trees in a dendlist object should have
#' their cor_cophenetic calculated.
#' @param method_coef a character string indicating which correlation coefficient
#' is to be computed. One of "pearson" (default), "kendall", or "spearman",
#' can be abbreviated. Passed to \link{cor}.
#' @param ... Ignored.
#'
#' @details
#'
#' From \link{cophenetic}:
#' The cophenetic distance between two observations that have been clustered
#' is defined to be the intergroup dissimilarity at which the two observations
#' are first combined into a single cluster. Note that this distance has many
#' ties and restrictions.
#'
#' cor_cophenetic calculates the correlation between two cophenetic distance
#' matrices of the two trees.
#'
#' The value can range between -1 to 1. With near 0 values meaning that
#' the two trees are not statistically similar.
#' For exact p-value one should result to a permutation test. One such option
#' will be to permute over the labels of one tree many times, and calculating
#' the distriubtion under the null hypothesis (keeping the trees topologies
#' constant).
#'
#' Notice that this measure IS affected by the height of a branch.
#'
#' @seealso
#' \link{cophenetic}, \link{cor_bakers_gamma}
#' @return
#' The correlation between cophenetic
#'
#' @references
#'
#' Sokal, R. R. and F. J. Rohlf. 1962. The comparison of dendrograms by
#' objective methods. Taxon, 11:33-40
#'
#' Sneath, P.H.A. and Sokal, R.R. (1973) Numerical Taxonomy: The Principles
#' and Practice of Numerical Classification, p. 278 ff; Freeman, San Francisco.
#'
#' \url{https://en.wikipedia.org/wiki/Cophenetic_correlation}
#'
#' @examples
#'
#' \dontrun{
#'
#' set.seed(23235)
#' ss <- sample(1:150, 10)
#' hc1 <- iris[ss, -5] %>%
#' dist() %>%
#' hclust("com")
#' hc2 <- iris[ss, -5] %>%
#' dist() %>%
#' hclust("single")
#' dend1 <- as.dendrogram(hc1)
#' dend2 <- as.dendrogram(hc2)
#' # cutree(dend1)
#'
#' cophenetic(hc1)
#' cophenetic(hc2)
#' # notice how the dist matrix for the dendrograms have different orders:
#' cophenetic(dend1)
#' cophenetic(dend2)
#'
#' cor(cophenetic(hc1), cophenetic(hc2)) # 0.874
#' cor(cophenetic(dend1), cophenetic(dend2)) # 0.16
#' # the difference is becasue the order of the distance table in the case of
#' # stats:::cophenetic.dendrogram will change between dendrograms!
#'
#' # however, this is consistant (since I force-sort the rows/columns):
#' cor_cophenetic(hc1, hc2)
#' cor_cophenetic(dend1, dend2)
#'
#' cor_cophenetic(dendlist(dend1, dend2))
#'
#' # we can also use different cor methods (almost the same result though):
#' cor_cophenetic(hc1, hc2, method = "spearman") # 0.8456014
#' cor_cophenetic(dend1, dend2, method = "spearman") #
#'
#'
#' # cophenetic correlation is about 10 times (!) faster than bakers_gamma cor:
#' library(microbenchmark)
#' microbenchmark(
#' cor_bakers_gamma = cor_bakers_gamma(dend1, dend2, try_cutree_hclust = FALSE),
#' cor_cophenetic = cor_cophenetic(dend1, dend2),
#' times = 10
#' )
#'
#' # but only because of the cutree for dendrogram. When allowing hclust cutree
#' # it is only about twice as fast:
#' microbenchmark(
#' cor_bakers_gamma = cor_bakers_gamma(dend1, dend2, try_cutree_hclust = TRUE),
#' cor_cophenetic = cor_cophenetic(dend1, dend2),
#' times = 10
#' )
#' }
#'
cor_cophenetic <- function(dend1, ...) {
UseMethod("cor_cophenetic")
}
#' @export
#' @rdname cor_cophenetic
cor_cophenetic.default <- function(dend1, dend2, method_coef = c("pearson", "kendall", "spearman"), ...) {
dist_dend1 <- cophenetic(dend1)
# if(!is.dist(dend2)) stop("dend2 must be either a dendrogram or a dist object")
if (is.dist(dend2)) {
dist_dend2 <- dend2
} else { # either dendrogram or hclust or other
dist_dend2 <- cophenetic(dend2)
}
# else - dend2 must be a distance matrix
# hclust objects actually don't need the sorting...
if (!is.hclust(dend1)) {
dist_dend1 <- sort_dist_mat(dist_dend1)
dist_dend2 <- sort_dist_mat(dist_dend2)
}
method_coef <- match.arg(method_coef)
cor(dist_dend1, dist_dend2, method = method_coef)
}
#' @export
#' @rdname cor_cophenetic
cor_cophenetic.dendlist <- function(dend1, which = c(1L, 2L), method_coef = c("pearson", "kendall", "spearman"), ...) {
method_coef <- match.arg(method_coef)
cor_cophenetic(dend1[[which[1]]], dend1[[which[2]]], method = method_coef, ...)
}
#
#
# cor_cophenetic.hclust <- function(dend1, dend2, method = c("pearson", "kendall", "spearman"), ...) {
# # hclust keeps things consistant
# dist_dend1 <- cophenetic(dend1)
# dist_dend2 <- cophenetic(dend2)
#
# cor(dist_dend1, dist_dend2 , method=method)
# }
#
#
# # ' @S3method cor_bakers_gamma dendrogram
# cor_cophenetic.dendrogram <- function(dend1, dend2, use_labels_not_values = TRUE, to_plot = FALSE, warn = dendextend_options("warn"), ...)
# {
# return(bakers_gamma)
# }
#
|