File: cutree.dendrogram.R

package info (click to toggle)
r-cran-dendextend 1.19.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 3,076 kB
  • sloc: sh: 13; makefile: 2
file content (931 lines) | stat: -rw-r--r-- 35,598 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
# Copyright (C) Tal Galili
#
# This file is part of dendextend.
#
# dendextend is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# dendextend is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
#  A copy of the GNU General Public License is available at
#  http://www.r-project.org/Licenses/
#


#' @title Sort the values level in a vector
#' @export
#' @description
#' Takes a numeric vector and sort its values so that they
#' would be increasing from left to right.
#' It is different from \code{\link{sort}} in that the function
#' will only "sort" the values levels, and not the vector itself.
#'
#' This function is useful for \link[dendextend]{cutree} - making the
#' sort_cluster_numbers parameter possible. Using that parameter with TRUE
#' makes the clusters id's from cutree to be ordered from left to right.
#' e.g: the left most cluster in the tree will be numbered "1", the one
#' after it will be "2" etc...).
#'
#' @param x a numeric vector.
#' @param MARGIN passed to \link{apply}. It is a vector giving the subscripts
#' which the function will be applied over.
#'  E.g., for a matrix 1 indicates rows, 2 indicates columns,
#'  c(1, 2) indicates rows and columns. Where X has named dimnames,
#'  it can be a character vector selecting dimension names.
#' @param decreasing logical (FALSE). Should the sort be increasing or decreasing?
#' @param force_integer logical (FALSE). Should the values returned be integers?
#' @param warn logical (default from dendextend_options("warn") is FALSE).
#' Set if warning are to be issued, it is safer to keep this at TRUE,
#' but for keeping the noise down, the default is FALSE.
#' (for example when x had NA values in it)
#' @param ... ignored.
#' @return if x is an object - it returns logical - is the object of class dendrogram.
#' @seealso \code{\link{sort}}, \code{\link{fac2num}}, \code{\link[dendextend]{cutree}}
#' @examples
#'
#' x <- 1:4
#' sort_levels_values(x) # 1 2 3 4
#'
#' x <- c(4:1)
#' names(x) <- letters[x]
#' attr(x, "keep_me") <- "a cat"
#' sort_levels_values(x) # 1 2 3 4
#'
#' x <- c(4:1, 4, 2)
#' sort_levels_values(x) # 1 2 3 4 1 3
#'
#' x <- c(2, 2, 3, 2, 1)
#' sort_levels_values(x) # 1 1 2 1 3
#'
#' x <- matrix(16:1, 4, 4)
#' rownames(x) <- letters[1:4]
#' x
#' apply(x, 2, sort_levels_values)
sort_levels_values <- function(x, MARGIN = 2, decreasing = FALSE, force_integer = FALSE, warn = dendextend_options("warn"), ...) {
  if (any(is.na(x))) {
    if (warn) warning("'x' had NA values - it is returned as is.")
    return(x)
  }

  if (!is.numeric(x)) stop("x must be a numeric vector/matrix")

  # make a function that would work on a vector
  sort_levels_values_vec <- function(x) {
    f_x <- factor(x, levels = unique(x))
    levels(f_x) <- sort(as.numeric(levels(f_x)), decreasing = decreasing)
    new_x <- x
    #       force_integer is available in the wrapping function
    new_x[seq_along(new_x)] <- fac2num(f_x, force_integer = force_integer) # this makes sure we retain things like names and attr
    return(new_x)
  }

  if (is.matrix(x)) {
    new_x <- apply(x, MARGIN = MARGIN, sort_levels_values_vec)
  } else {
    new_x <- sort_levels_values_vec(x)
  }

  return(new_x)
}





#' @title Check if numbers are natural
#' @export
#' @description Vectorized function for checking if numbers are natural or not.
#' Helps in checking if a vector is of type "order".
#' @param x a vector of numbers
#' @param tol tolerence to floating point issues.
#' @param ... (not currently in use)
#' @return logical - is the entered number natural or not.
#' @author Marco Gallotta (a.k.a: marcog), Tal Galili
#' @source
#' This function was written by marcog, as an answer to my question here:
#' \url{https://stackoverflow.com/questions/4562257/what-is-the-fastest-way-to-check-if-a-number-is-a-positive-natural-number-in-r}
#' @seealso \code{\link{is.numeric}}, \code{\link{is.double}}, \code{\link{is.integer}}
#' @examples
#' is.natural.number(1) # is TRUE
#' (x <- seq(-1, 5, by = 0.5))
#' is.natural.number(x)
#' # is.natural.number( "a" )
#' all(is.natural.number(x))
is.natural.number <- function(x, tol = .Machine$double.eps^0.5, ...) {
  x > tol & abs(x - round(x)) < tol
}

## Not important enough to include
# all.natural.numbers <- function(x) all(is.natural.number(x))   # check if all the numbers in a vector are natural
# why is this important?
# because it can enable one to check if what we have is a vector of "order"






#' @title cutree for dendrogram (by 1 height only!)
#' @export
#' @description Cuts a dendrogram tree into several groups
#' by specifying the desired cut height (only a single height!).
#' @param dend   a dendrogram object
#' @param h    numeric scalar (NOT a vector) with a height where the dend should be cut.
#' @param use_labels_not_values logical, defaults to TRUE. If the actual labels of the
#' clusters do not matter - and we want to gain speed (say, 10 times faster) -
#' then use FALSE (gives the "leaves order" instead of their labels.).
#' @param order_clusters_as_data logical, defaults to TRUE. There are two ways by which
#' to order the clusters: 1) By the order of the original data. 2) by the order of the
#' labels in the dendrogram. In order to be consistent with \link[stats]{cutree}, this is set
#' to TRUE.
#' @param warn logical (default from dendextend_options("warn") is FALSE).
#' Set if warning are to be issued, it is safer to keep this at TRUE,
#' but for keeping the noise down, the default is FALSE.
#' @param ... (not currently in use)
#' @return \code{cutree_1h.dendrogram} returns an integer vector with group memberships
#' @author Tal Galili
#' @seealso \code{\link{hclust}}, \code{\link{cutree}}
#' @examples
#' hc <- hclust(dist(USArrests[c(1, 6, 13, 20, 23), ]), "ave")
#' dend <- as.dendrogram(hc)
#' cutree(hc, h = 50) # on hclust
#' cutree_1h.dendrogram(dend, h = 50) # on a dendrogram
#'
#' labels(dend)
#'
#' # the default (ordered by original data's order)
#' cutree_1h.dendrogram(dend, h = 50, order_clusters_as_data = TRUE)
#'
#' # A different order of labels - order by their order in the tree
#' cutree_1h.dendrogram(dend, h = 50, order_clusters_as_data = FALSE)
#'
#'
#' # make it faster
#' \dontrun{
#' library(microbenchmark)
#' microbenchmark(
#'   cutree_1h.dendrogram(dend, h = 50),
#'   cutree_1h.dendrogram(dend, h = 50, use_labels_not_values = FALSE)
#' )
#' # 0.8 vs 0.6 sec - for 100 runs
#' }
#'
cutree_1h.dendrogram <- function(dend, h,
                                 order_clusters_as_data = TRUE, use_labels_not_values = TRUE,
                                 warn = dendextend_options("warn"), ...) {
  if (missing(h)) stop("h is missing")

  if (length(h) > 1) {
    if (warn) warning("h has length > 1 and only the first element will be used")
    h <- h[1]
  }

  # deal with cases that we cut the dend to all leaves. (negative h)
  if (h < 0) {
    labels_dend <- labels(dend)
    cluster_vec <- 1:length(labels_dend)
    names(cluster_vec)[order.dendrogram(dend)] <- labels_dend
    return(cluster_vec)
  }



  if (use_labels_not_values) {
    FUN <- labels
  } else {
    FUN <- order.dendrogram
  }


  #    cut_replace <- function(dend, h, FUN) {
  #       if(attr(dend, "height") <= h  ) return(list(FUN(dend)))
  #
  #       clusters <- list()
  #       counter <- 1
  #
  #       add_clusters <- function(dend_node)
  #       {
  #          if(is.leaf(dend_node)) {
  #             clusters[[counter]] <<-FUN(dend_node)
  #             return(NULL)
  #          }
  #          for(i in seq(dend_node)) {
  #             dend_node_child_height <- attr(dend_node[[i]], "height")
  #             if(dend_node_child_height>h) { # notice I'm using > and not >= (this might be worth checking further)
  #                if(is.leaf(dend_node[[i]])) {
  #                   clusters[[counter]] <<- FUN(dend_node[[i]])
  #                } else {
  #                   add_clusters(dend_node[[i]])
  #                }
  #             } else { # this node is now a new cluser, hence:
  #                clusters[[counter]] <<- FUN(dend_node[[i]])
  #                counter <<- 1 + counter
  #             }
  #          }
  #          return(NULL)
  #       }
  #       add_clusters(dend)
  #       return(clusters)
  #    }
  # an alternatice which is not faster (but may be used in the future for making this into an Rcpp function!)
  #    names_in_clusters <- cut_replace(dend, h, FUN)

  #    names_in_clusters <- sapply(cut(dend, h = h)$lower, FUN)   # If the proper labels are not important, this function is around 10 times faster than using labels (so it is much better for some other algorithms)
  names_in_clusters <- cut_lower_fun(dend, h, FUN) # If the proper labels are not important, this function is around 10 times faster than using labels (so it is much better for some other algorithms)
  # Type of output:
  #    [[1]]
  #    [1] "Minnesota"
  #
  #    [[2]]
  #    [1] "Maryland" "Colorado" "Alabama"  "Illinois"

  number_of_clusters <- length(names_in_clusters)
  number_of_members_in_clusters <- sapply(names_in_clusters, length) # a list with item per cluster. each item is a character vector with the names of the items in that cluster
  cluster_vec <- rep(rev(seq_len(number_of_clusters)), times = number_of_members_in_clusters) # like in the original cutree
  # I am using "rev" on "seq_len" - so that the resulting cluster numbers will be consistant with those of cutree.hclust

  # 2011-01-10: this is to fix the "bug" (I don't think it's a feature) of having the cut.dendrogram return splitted tree when h is heigher then the tree...
  # now it gives consistent results with cutree
  if (h > attr(dend, "height")) cluster_vec <- rep(1L, length(cluster_vec))

  names(cluster_vec) <- unlist(names_in_clusters)


  # note: The order of the items in cluster_vec, is according to their order in the dendrogram.
  # If the dendrogram was created through as.dendrogram(hclust_object)
  # The original order of the names of the items, from which the hclust (and the dendrogram) object was created from, will not be preserved!

  clusters_order <- order.dendrogram(dend)

  if (order_clusters_as_data) {
    if (!all(clusters_order %in% seq_along(clusters_order))) {
      if (warn) {
        warning("rank() was used for the leaves order number! \nExplenation: leaves tip number (the order), and the ranks of these numbers - are not equal.\n  The dend was probably subsetted, pruned and/or merged with other dends- and now the order \n labels don't make so much sense (hence, the rank on them was used).")
        warning("Here is the cluster order vector (from the dend tips) \n", paste(clusters_order, collapse = ", "), "\n")
      }
      clusters_order <- rank(clusters_order, ties.method = "first") # we use the "first" ties method - to handle the cases of ties in the ranks (after splits/merges with other dends)
    }

    cluster_vec <- cluster_vec[order(clusters_order)] # this reorders the cluster_vec according to the original order of the items from which the dend (maybe hclust) was created
  }

  # 2013-07-28: stay consistant with hclust:
  # if we have as many clusters as items - they should be numbered
  # from left to right...
  dend_size <- nleaves(dend, method = "order")
  if (number_of_clusters == dend_size) cluster_vec[seq_len(dend_size)] <- seq_len(dend_size)

  return(cluster_vec)
}











#' @title Which height will result in which k for a dendrogram
#' @description Which height will result in which k for a dendrogram.
#' This helps with speeding up the \link{cutree.dendrogram} function.
#' @export
#' @aliases
#' dendextend_heights_per_k.dendrogram
#' @param dend a dendrogram.
#' @param ... not used.
#' @return a vector of heights, with its names being the k clusters that will
#' result for cutting the dendrogram at each height.
#'
#' @examples
#' \dontrun{
#' hc <- hclust(dist(USArrests[1:4, ]), "ave")
#' dend <- as.dendrogram(hc)
#' heights_per_k.dendrogram(dend)
#' ##       1        2        3        4
#' ## 86.47086 68.84745 45.98871 28.36531
#'
#' cutree(hc, h = 68.8) # and indeed we get 2 clusters
#'
#' unbranch_dend <- unbranch(dend, 2)
#' plot(unbranch_dend)
#' heights_per_k.dendrogram(unbranch_dend)
#' # 1        3        4
#' # 97.90023 57.41808 16.93594
#' # we do NOT have a height for k=2 because of the tree's structure.
#' 
#' }
heights_per_k.dendrogram <- function(dend, ...) {
  # gets a dendro tree
  # returns a vector of heights, and the k clusters we'll get for each of them.

  our_dend_heights <- sort(unique(get_branches_heights(dend, sort = FALSE)), TRUE)

  heights_to_remove_for_A_cut <- min(-diff(our_dend_heights)) / 2 # the height to add so to be sure we get a "clear" cut
  heights_to_cut_by <- c(
    (max(our_dend_heights) + heights_to_remove_for_A_cut), # adding the height for 1 clusters only (this is not mandetory and could be different or removed)
    (our_dend_heights - heights_to_remove_for_A_cut)
  )
  # 	names(heights_to_cut_by) <- sapply(heights_to_cut_by, function(h) {length(cut(dend, h = h)$lower)}) # this is the SLOW line - I need to do it differently...
  names(heights_to_cut_by) <- sapply(heights_to_cut_by, function(h) {
    length(cut(dend, h = h)$lower)
  }) # this is the SLOW line - I need to do it differently...


  dend_size <- nleaves(dend)
  # I use "length(heights_to_cut_by)" for cases when I don't have a height for every possible cut
  names(heights_to_cut_by)[length(heights_to_cut_by)] <- as.character(dend_size) # should always be the max...
  names(heights_to_cut_by)[1] <- "1" # should always be 1. (the fact that it's currently not is a bug - remove this line once it is fixed)
  return(heights_to_cut_by)
  # notice we might have certion k's that won't exist in this list!
}






#' @title cutree for dendrogram (by 1 k value only!)
#' @export
#' @description Cuts a dendrogram tree into several groups
#' by specifying the desired number of clusters k (only a single k value!).
#'
#' In case there exists no such k for which exists a relevant split of the
#' dendrogram, a warning is issued to the user, and NA is returned.
#' @param dend   a dendrogram object
#' @param k    numeric scalar (not a vector!) with the number of clusters
#' the tree should be cut into.
#' @param dend_heights_per_k a named vector that resulted from running.
#' \code{heights_per_k.dendrogram}. When running the function many times,
#' supplying this object will help improve the running time.
#' @param use_labels_not_values logical, defaults to TRUE. If the actual labels of the
#' clusters do not matter - and we want to gain speed (say, 10 times faster) -
#' then use FALSE (gives the "leaves order" instead of their labels.).
#' This is passed to \code{cutree_1h.dendrogram}.
#' @param order_clusters_as_data logical, defaults to TRUE. There are two ways by which
#' to order the clusters: 1) By the order of the original data. 2) by the order of the
#' labels in the dendrogram. In order to be consistent with \link[stats]{cutree}, this is set
#' to TRUE.
#' This is passed to \code{cutree_1h.dendrogram}.
#' @param warn logical (default from dendextend_options("warn") is FALSE).
#' Set if warning are to be issued, it is safer to keep this at TRUE,
#' but for keeping the noise down, the default is FALSE.
#' Should the function send a warning in case the desried k is not available?
#' @param ... (not currently in use)
#' @return \code{cutree_1k.dendrogram} returns an integer vector with group
#' memberships.
#'
#' In case there exists no such k for which exists a relevant split of the
#' dendrogram, a warning is issued to the user, and NA is returned.
#' @author Tal Galili
#' @seealso \code{\link{hclust}}, \code{\link{cutree}},
#' \code{\link{cutree_1h.dendrogram}}
#' @examples
#' hc <- hclust(dist(USArrests[c(1, 6, 13, 20, 23), ]), "ave")
#' dend <- as.dendrogram(hc)
#' cutree(hc, k = 3) # on hclust
#' cutree_1k.dendrogram(dend, k = 3) # on a dendrogram
#'
#' labels(dend)
#'
#' # the default (ordered by original data's order)
#' cutree_1k.dendrogram(dend, k = 3, order_clusters_as_data = TRUE)
#'
#' # A different order of labels - order by their order in the tree
#' cutree_1k.dendrogram(dend, k = 3, order_clusters_as_data = FALSE)
#'
#'
#' # make it faster
#' \dontrun{
#' library(microbenchmark)
#' dend_ks <- heights_per_k.dendrogram
#' microbenchmark(
#'   cutree_1k.dendrogram = cutree_1k.dendrogram(dend, k = 4),
#'   cutree_1k.dendrogram_no_labels = cutree_1k.dendrogram(dend,
#'     k = 4, use_labels_not_values = FALSE
#'   ),
#'   cutree_1k.dendrogram_no_labels_per_k = cutree_1k.dendrogram(dend,
#'     k = 4, use_labels_not_values = FALSE,
#'     dend_heights_per_k = dend_ks
#'   )
#' )
#' # the last one is the fastest...
#' }
#'
cutree_1k.dendrogram <- function(dend, k,
                                 dend_heights_per_k = NULL,
                                 use_labels_not_values = TRUE,
                                 order_clusters_as_data = TRUE,
                                 warn = dendextend_options("warn"), ...) {
  #    if(!is.integer(k) && warn) warning("k is not an integer - using k<-as.integer(k)")
  k <- as.integer(k) # making this consistant with cutree.hclust!!

  # STOPING RULES:

  # if k is not natural - stop!
  if (!is.natural.number(k)) stop(paste("k must be a natural number!  The k you used (", k, ") is not a natural number"))

  # if k is "too large" then stop!
  if (k > nleaves(dend)) stop(paste("elements of 'k' must be between 1 and", nleaves(dend)))

  # if k is 1 - it is trivial to run and return:
  if (k == 1L) {
    h_to_use <- attr(dend, "height") + 1
    cluster_vec <- cutree_1h.dendrogram(dend,
      h = h_to_use,
      use_labels_not_values = use_labels_not_values,
      order_clusters_as_data = order_clusters_as_data,
      ...
    )
    return(cluster_vec)
  }

  # deal with cases that we cut the dend to all leaves. (k == nleaves)
  if (k == nleaves(dend)) {
    labels_dend <- labels(dend)
    cluster_vec <- 1:length(labels_dend)
    names(cluster_vec)[order.dendrogram(dend)] <- labels_dend
    return(cluster_vec)
  }



  # step 1: find all possible h cuts for dend
  if (is.null(dend_heights_per_k)) {
    # since this is a step which takes a long time, If possible, I'd rather supply this to the function, so to make sure it runs faster...
    dend_heights_per_k <- heights_per_k.dendrogram(dend)
  }


  # step 2: Check location in the vector of the height for the k we are interested in
  height_for_our_k <- which(names(dend_heights_per_k) == k)
  if (length(height_for_our_k) != 0) # if such a height exists
  {
    h_to_use <- dend_heights_per_k[height_for_our_k]
    cluster_vec <- cutree_1h.dendrogram(dend,
      h = h_to_use,
      use_labels_not_values = use_labels_not_values,
      order_clusters_as_data = order_clusters_as_data,
      ...
    )
    #       if(to_print) print(paste("The dendrogram was cut at height",
    #                                round(h_to_use, 4), "in order to create",k, "clusters."))
  } else {
    cluster_vec <- rep(NA, nleaves(dend, method = "order"))

    # telling the user way he can't use this k
    if (warn) {
      warning("Couldn't cut the dend - returning NA.")

      k_s <- as.numeric(names(dend_heights_per_k))
      # either his k is outside the possible options
      if (k > max(k_s) || k < min(k_s)) {
        range_for_clusters <- paste("[", paste(range(k_s), collapse = "-"), "]", sep = "") # it's always supposed to be between 1 to max number of items (so this could be computed in more efficient ways)
        warning(paste("No cut exists for creating", k, "clusters.  The possible range for clusters is:", range_for_clusters))
      } else {
        warning(paste("You (probably) have some branches with equal heights so that there exist no height(h) that can create", k, " clusters"))
      }
    }
  }
  return(cluster_vec)
}





#' @title Cut a Tree (Dendrogram/hclust/phylo) into Groups of Data
#' @export
#' @description Cuts a dendrogram tree into several groups
#' by specifying the desired number of clusters k(s), or cut height(s).
#'
#' For \code{hclust.dendrogram} -
#' In case there exists no such k for which exists a relevant split of the
#' dendrogram, a warning is issued to the user, and NA is returned.
#' @rdname cutree-methods
#'
#' @param tree   a dendrogram object
#' @param k    numeric scalar (OR a vector) with the number of clusters
#' the tree should be cut into.
#' @param h    numeric scalar (OR a vector) with a height where the tree
#' should be cut.
#' @param dend_heights_per_k a named vector that resulted from running.
#' \code{heights_per_k.dendrogram}. When running the function many times,
#' supplying this object will help improve the running time if using k!=NULL .
#' @param use_labels_not_values logical, defaults to TRUE. If the actual labels of the
#' clusters do not matter - and we want to gain speed (say, 10 times faster) -
#' then use FALSE (gives the "leaves order" instead of their labels.).
#' This is passed to \code{cutree_1h.dendrogram}.
#' @param order_clusters_as_data logical, defaults to TRUE. There are two ways by which
#' to order the clusters: 1) By the order of the original data. 2) by the order of the
#' labels in the dendrogram. In order to be consistent with \link[stats]{cutree}, this is set
#' to TRUE.
#' This is passed to \code{cutree_1h.dendrogram}.
#' @param warn logical (default from dendextend_options("warn") is FALSE).
#' Set if warning are to be issued, it is safer to keep this at TRUE,
#' but for keeping the noise down, the default is FALSE.
#' Should the function send a warning in case the desried k is not available?
#' @param try_cutree_hclust logical. default is TRUE. Since cutree for hclust is
#' MUCH faster than for dendrogram - cutree.dendrogram will first try to change the
#' dendrogram into an hclust object. If it will fail (for example, with unbranched trees),
#' it will continue using the cutree.dendrogram function.
#' If try_cutree_hclust=FALSE, it will force to use cutree.dendrogram and not
#' cutree.hclust.
#' @param NA_to_0L logical. default is TRUE. When no clusters are possible,
#' Should the function return 0 (TRUE, default), or NA (when set to FALSE).
#' @param ... (not currently in use)
#'
#' @details
#' At least one of k or h must be specified, k overrides h if both are given.
#'
#' as opposed to \link[stats]{cutree} for hclust, \code{cutree.dendrogram} allows the
#' cutting of trees at a given height also for non-ultrametric trees
#' (ultrametric tree == a tree with monotone clustering heights).
#'
#' @return
#'
#' If k or h are scalar - \code{cutree.dendrogram} returns an integer vector with group
#' memberships.
#' Otherwise a matrix with group memberships is returned where each column
#' corresponds to the elements of k or h, respectively
#' (which are also used as column names).
#'
#' In case there exists no such k for which exists a relevant split of the
#' dendrogram, a warning is issued to the user, and NA is returned.
#'
#'
#' @author
#' \code{cutree.dendrogram} was written by Tal Galili.
#' \code{cutree.hclust} is redirecting the function
#' to \link[stats]{cutree} from base R.
#'
#' @seealso \code{\link{hclust}}, \code{\link[stats]{cutree}},
#' \code{\link{cutree_1h.dendrogram}}, \code{\link{cutree_1k.dendrogram}},
#'
#' @examples
#'
#' \dontrun{
#' hc <- hclust(dist(USArrests[c(1, 6, 13, 20, 23), ]), "ave")
#' dend <- as.dendrogram(hc)
#' unbranch_dend <- unbranch(dend, 2)
#'
#' cutree(hc, k = 2:4) # on hclust
#' cutree(dend, k = 2:4) # on dendrogram
#'
#' cutree(hc, k = 2) # on hclust
#' cutree(dend, k = 2) # on dendrogram
#'
#' cutree(dend, h = c(20, 25.5, 50, 170))
#' cutree(hc, h = c(20, 25.5, 50, 170))
#'
#' # the default (ordered by original data's order)
#' cutree(dend, k = 2:3, order_clusters_as_data = FALSE)
#' labels(dend)
#'
#' # as.hclust(unbranch_dend) # ERROR - can not do this...
#' cutree(unbranch_dend, k = 2) # all NA's
#' cutree(unbranch_dend, k = 1:4)
#' cutree(unbranch_dend, h = c(20, 25.5, 50, 170))
#' cutree(dend, h = c(20, 25.5, 50, 170))
#'
#'
#' library(microbenchmark)
#' ## this shows how as.hclust is expensive - but still worth it if possible
#' microbenchmark(
#'   cutree(hc, k = 2:4),
#'   cutree(as.hclust(dend), k = 2:4),
#'   cutree(dend, k = 2:4),
#'   cutree(dend, k = 2:4, try_cutree_hclust = FALSE)
#' )
#' # the dendrogram is MUCH slower...
#'
#' # Unit: microseconds
#' ##                       expr      min       lq    median        uq       max neval
#' ##        cutree(hc, k = 2:4)   91.270   96.589   99.3885  107.5075   338.758   100
#' ##    tree(as.hclust(dend),
#' ## 			  k = 2:4)           1701.629 1767.700 1854.4895 2029.1875  8736.591   100
#' ##      cutree(dend, k = 2:4) 1807.456 1869.887 1963.3960 2125.2155  5579.705   100
#' ##  cutree(dend, k = 2:4,
#' ## 	try_cutree_hclust = FALSE) 8393.914 8570.852 8755.3490 9686.7930 14194.790   100
#'
#' # and trying to "hclust" is not expensive (which is nice...)
#' microbenchmark(
#'   cutree_unbranch_dend = cutree(unbranch_dend, k = 2:4),
#'   cutree_unbranch_dend_not_trying_to_hclust =
#'     cutree(unbranch_dend, k = 2:4, try_cutree_hclust = FALSE)
#' )
#'
#'
#' ## Unit: milliseconds
#' ##                   expr      min       lq   median       uq      max neval
#' ## cutree_unbranch_dend       7.309329 7.428314 7.494107 7.752234 17.59581   100
#' ## cutree_unbranch_dend_not
#' ## _trying_to_hclust        6.945375 7.079198 7.148629 7.577536 16.99780   100
#' ## There were 50 or more warnings (use warnings() to see the first 50)
#'
#' # notice that if cutree can't find clusters for the desired k/h, it will produce 0's instead!
#' # (It will produce a warning though...)
#' # This is a different behaviout than stats::cutree
#' # For example:
#' cutree(as.dendrogram(hclust(dist(c(1, 1, 1, 2, 2)))),
#'   k = 5
#' )
#' }
#'
cutree <- function(tree, k = NULL, h = NULL, ...) {
  UseMethod("cutree")
}


#' @export
#' @rdname cutree-methods
cutree.default <- function(tree, k = NULL, h = NULL, ...) {
  cutree(as.dendrogram(tree), k = k, h = h, ...)
  # stop("Function cutree is only available for hclust/dendrogram/phylo objects only.")
}

#' @export
#' @rdname cutree-methods
cutree.hclust <- function(tree, k = NULL, h = NULL,
                          use_labels_not_values = TRUE, # ignored here...
                          order_clusters_as_data = TRUE,
                          warn = dendextend_options("warn"),
                          NA_to_0L = TRUE, # ignored here...
                          ...) {
  sort_cluster_numbers <- TRUE

  ## Add an important warning before R crashes.
  if (warn) {
    if (any(is.na(labels(tree)))) {
      warning("'tree' has NA's in its labels (e.g: labels(tree)) - 
              cutree might crash R.
              If you used as.hclust on a subset of a dendrogram (e.g: dend[[1]]),
              Make sure to first fix the dendrogram's order tips. See:
              help('order.dendrogram<-')
              for suggestion on how to do that.

               (use warn=FALSE if you don't want to see this warning again)
              ")
      #          ANSWER <- menu(c("Yes (continue)", "No (stop)"), graphics = FALSE, title = "Are you sure you want to proceed with cutree?")
      #          if(exists("ANSWER") && ANSWER==2) stop("'cutree' was stopped by the user.")
    }
  }


  clusters <- stats::cutree(tree, k = k, h = h, ...)
  if (!order_clusters_as_data) {
    if (is.matrix(clusters)) {
      clusters <- clusters[tree$order, ]
    } else {
      clusters <- clusters[tree$order]
    }
  }


  # sort the clusters id
  if (sort_cluster_numbers) clusters <- sort_levels_values(clusters, force_integer = TRUE, warn = FALSE)
  # we know that cluster id is an integer, so it is fine to use force_integer = TRUE

  return(clusters)
}














# ' @S3method cutree phylo
#' @export
#' @rdname cutree-methods
cutree.phylo <- function(tree, k = NULL, h = NULL, ...) {
  cutree(as.dendrogram(tree), k = k, h = h, ...)
}


# ' @S3method cutree phylo
#' @export
#' @rdname cutree-methods
cutree.phylo <- function(tree, k = NULL, h = NULL, ...) {
  cutree(as.dendrogram(tree), k = k, h = h, ...)
}

# ' @S3method cutree phylo
#' @export
#' @rdname cutree-methods
cutree.agnes <- function(tree, k = NULL, h = NULL, ...) {
  cutree(as.dendrogram(tree), k = k, h = h, ...)
}
# stats::cutree

#' @export
#' @rdname cutree-methods
cutree.diana <- function(tree, k = NULL, h = NULL, ...) {
  cutree(as.dendrogram(tree), k = k, h = h, ...)
}


# In "cutree.dendrogram" I use "tree" instead of "dend" - in order to stay compatible with stats:cutree


# ' @S3method cutree dendrogram
#' @export
#' @rdname cutree-methods
cutree.dendrogram <- function(tree, k = NULL, h = NULL,
                              dend_heights_per_k = NULL,
                              use_labels_not_values = TRUE,
                              order_clusters_as_data = TRUE,
                              # sort_cluster_numbers = TRUE,
                              warn = dendextend_options("warn"),
                              try_cutree_hclust = TRUE,
                              NA_to_0L = TRUE,
                              ...) {
  sort_cluster_numbers <- TRUE

  # warnings and stopping rules:
  if (!is.dendrogram(tree)) stop("tree should be of class dendrogram (and for some reason - it is not)")
  if (is.null(k) && is.null(h)) stop("Neither k nor h were specified")
  if (!is.null(k) && !is.null(h)) {
    if (warn) warning("Both k and h were specified - using k as default 
                       (consider using only h or k in order to avoid confusions)")
    h <- NULL
  }


  # If it is possible to use cutree.hclust - we will!
  # this would be faster, especially when using k.
  # and if it doesn't, we would fall back on our function
  if (try_cutree_hclust) {

    # Fixed the case when order.dendrogram is not the numbers it should
    # Replacing the order tips with their rank. (otherwise, cutree will CRASH R <= 3.0.1)
    order_tree <- order.dendrogram(tree)
    if (!all(order_tree %in% seq_along(order_tree))) {
      if (warn) {
        warning("rank() was used for the leaves order number! \nExplenation: leaves tip number (the order), and the ranks of these numbers - are not equal.\n  The tree was probably subsetted, pruned and/or merged with other trees- and now the order \n labels don't make so much sense (hence, the rank on them was used).")
        warning("Here is the cluster order vector (from the tree tips) \n", paste(order_tree, collapse = ", "), "\n")
      }
      tree <- rank_order.dendrogram(tree)
      #          order.dendrogram(tree) <- rank(order_tree, ties.method = "first")   # we use the "first" ties method - to handle the cases of ties in the ranks (after splits/merges with other trees)
    }

    # if we succeed (tryCatch) in turning it into hclust - use it!
    # if not - go on with the function.
    hclust_tree <- tryCatch(
      as.hclust(tree),
      error = function(e) FALSE
    )

    if (is.hclust(hclust_tree)) {
      return(cutree(
        tree = hclust_tree, k = k, h = h,
        order_clusters_as_data = order_clusters_as_data,
        # sort_cluster_numbers = sort_cluster_numbers,
        ...
      ))
    }
  }



  if (!is.null(k)) {
    #       cluster_vec <- cutree_1k.dendrogram(tree, k,...) # NO, this would only work for scalars...

    if (is.null(dend_heights_per_k)) {
      # since this is a step which takes a long time, If possible, I'd rather supply this to the function, so to make sure it runs faster...
      dend_heights_per_k <- heights_per_k.dendrogram(tree)
    }
    cutree_per_k <- function(x, tree, ...) cutree_1k.dendrogram(k = x, dend = tree, ...)
    clusters <- sapply(
      X = k, FUN = cutree_per_k,
      tree = tree,
      dend_heights_per_k = dend_heights_per_k,
      use_labels_not_values = use_labels_not_values,
      order_clusters_as_data = order_clusters_as_data,
      warn = warn,
      ...
    )
    colnames(clusters) <- k
  }

  # What to do in case h is supplied
  if (!is.null(h)) {
    #       cluster_vec <- cutree_1h.dendrogram(tree, h,...) # nope...
    cutree_per_h <- function(x, tree, ...) cutree_1h.dendrogram(h = x, dend = tree, ...)
    clusters <- sapply(
      X = h, FUN = cutree_per_h,
      tree = tree,
      use_labels_not_values = use_labels_not_values,
      order_clusters_as_data = order_clusters_as_data,
      warn = warn,
      ...
    )
    colnames(clusters) <- h
  }

  # return a vector if h/k are scalars:
  if (ncol(clusters) == 1) clusters <- clusters[, 1] # make it NOT a matrix

  # sort the clusters id
  if (sort_cluster_numbers) clusters <- sort_levels_values(clusters, force_integer = TRUE, warn = FALSE)
  # we know that cluster id is an integer, so it is fine to use force_integer = TRUE

  if (any(is.na(clusters))) warning("It is impossible to produce a one-to-one cut for the k/h you specidied. 0's have been introduced. Note that this result would be different from R's default cutree output.")

  if (NA_to_0L) clusters[is.na(clusters)] <- 0L

  return(clusters)
}





# if(FALSE) {
# library(dendextend)

# set.seed(23235)
# ss <- sample(1:150, 10 )
# hc1 <- hclust(dist(iris[ss,-5]), "com")
# dend1 <- as.dendrogram(hc1)

## does not give the same results!
# cutree(dend1, k=2:3, order_clusters_as_data=TRUE, try_cutree_hclust=FALSE, sort_cluster_numbers=FALSE)

## this gives the same results as the default:
# cutree.hclust(as.hclust(dend1), k = 3, order_clusters_as_data=TRUE, sort_cluster_numbers=FALSE)
# stats::cutree(as.hclust(dend1), k = 3)
## but not for dendrogram:
# cutree(dend1, k=3, order_clusters_as_data=TRUE, try_cutree_hclust=FALSE, sort_cluster_numbers=TRUE)
# cutree(dend1, k=3, order_clusters_as_data=TRUE, try_cutree_hclust=FALSE, sort_cluster_numbers=FALSE)


## this gives the same results as the default:
# cutree.hclust(as.hclust(dend1), k = 3, order_clusters_as_data=TRUE, sort_cluster_numbers=TRUE)
# stats::cutree(as.hclust(dend1), k = 3)
# stats::cutree(hc1, k = 3)
# cutree.dendrogram(dend1, k=3, order_clusters_as_data=TRUE, try_cutree_hclust=FALSE,
# sort_cluster_numbers=TRUE)


# }









### TODO:
### possible functions to add:
# ultrametric
# is.ultrametric(as.phylo(as.hclust(dend)))
# is.ultrametric(as.phylo(as.hclust(hang.dendrogram(dend))))
# plot(as.phylo(as.hclust(hang.dendrogram(dend))))
# is.ultrametric(as.phylo(as.hclust(dend, hang = 2)))
# is.binary.tree






## ----------------------
## examples:
# hc <- hclust(dist(USArrests[c(1:3,7,5),]), "ave")
# dhc <- as.dendrogram(hc)
# str(dhc)
# plot(hc)

# cutree(dhc, h = 50)
# cutree.dendrogram(dhc, h = 50)
# cutree.dendrogram(dhc, k = 3) # same output
# cutree.dendrogram(dhc, k = 3,h = 50) # conflicting options - using h as default
# cutree.dendrogram(dhc, k = 10) # handaling the case were k is not a viable number of clusters

## showing another case were k is not an option
# attr(dhc[[2]][[1]], "height") <- 23.2
# attr(dhc[[2]][[2]], "height") <- 23.2
# plot(dhc)
# is.ultrametric(as.phylo(dhc))
# cutree.dendrogram(dhc, k = 4) # handaling the case were k is not a viable number of clusters
# cutree.dendrogram(dhc, k = 3.2) # handaling the case were k is not a viable number of clusters


# heights_per_k.dendrogram(dhc)