1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
|
# Copyright (C) Tal Galili
#
# This file is part of dendextend.
#
# dendextend is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# dendextend is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# http://www.r-project.org/Licenses/
#
#' @title Sort the values level in a vector
#' @export
#' @description
#' Takes a numeric vector and sort its values so that they
#' would be increasing from left to right.
#' It is different from \code{\link{sort}} in that the function
#' will only "sort" the values levels, and not the vector itself.
#'
#' This function is useful for \link[dendextend]{cutree} - making the
#' sort_cluster_numbers parameter possible. Using that parameter with TRUE
#' makes the clusters id's from cutree to be ordered from left to right.
#' e.g: the left most cluster in the tree will be numbered "1", the one
#' after it will be "2" etc...).
#'
#' @param x a numeric vector.
#' @param MARGIN passed to \link{apply}. It is a vector giving the subscripts
#' which the function will be applied over.
#' E.g., for a matrix 1 indicates rows, 2 indicates columns,
#' c(1, 2) indicates rows and columns. Where X has named dimnames,
#' it can be a character vector selecting dimension names.
#' @param decreasing logical (FALSE). Should the sort be increasing or decreasing?
#' @param force_integer logical (FALSE). Should the values returned be integers?
#' @param warn logical (default from dendextend_options("warn") is FALSE).
#' Set if warning are to be issued, it is safer to keep this at TRUE,
#' but for keeping the noise down, the default is FALSE.
#' (for example when x had NA values in it)
#' @param ... ignored.
#' @return if x is an object - it returns logical - is the object of class dendrogram.
#' @seealso \code{\link{sort}}, \code{\link{fac2num}}, \code{\link[dendextend]{cutree}}
#' @examples
#'
#' x <- 1:4
#' sort_levels_values(x) # 1 2 3 4
#'
#' x <- c(4:1)
#' names(x) <- letters[x]
#' attr(x, "keep_me") <- "a cat"
#' sort_levels_values(x) # 1 2 3 4
#'
#' x <- c(4:1, 4, 2)
#' sort_levels_values(x) # 1 2 3 4 1 3
#'
#' x <- c(2, 2, 3, 2, 1)
#' sort_levels_values(x) # 1 1 2 1 3
#'
#' x <- matrix(16:1, 4, 4)
#' rownames(x) <- letters[1:4]
#' x
#' apply(x, 2, sort_levels_values)
sort_levels_values <- function(x, MARGIN = 2, decreasing = FALSE, force_integer = FALSE, warn = dendextend_options("warn"), ...) {
if (any(is.na(x))) {
if (warn) warning("'x' had NA values - it is returned as is.")
return(x)
}
if (!is.numeric(x)) stop("x must be a numeric vector/matrix")
# make a function that would work on a vector
sort_levels_values_vec <- function(x) {
f_x <- factor(x, levels = unique(x))
levels(f_x) <- sort(as.numeric(levels(f_x)), decreasing = decreasing)
new_x <- x
# force_integer is available in the wrapping function
new_x[seq_along(new_x)] <- fac2num(f_x, force_integer = force_integer) # this makes sure we retain things like names and attr
return(new_x)
}
if (is.matrix(x)) {
new_x <- apply(x, MARGIN = MARGIN, sort_levels_values_vec)
} else {
new_x <- sort_levels_values_vec(x)
}
return(new_x)
}
#' @title Check if numbers are natural
#' @export
#' @description Vectorized function for checking if numbers are natural or not.
#' Helps in checking if a vector is of type "order".
#' @param x a vector of numbers
#' @param tol tolerence to floating point issues.
#' @param ... (not currently in use)
#' @return logical - is the entered number natural or not.
#' @author Marco Gallotta (a.k.a: marcog), Tal Galili
#' @source
#' This function was written by marcog, as an answer to my question here:
#' \url{https://stackoverflow.com/questions/4562257/what-is-the-fastest-way-to-check-if-a-number-is-a-positive-natural-number-in-r}
#' @seealso \code{\link{is.numeric}}, \code{\link{is.double}}, \code{\link{is.integer}}
#' @examples
#' is.natural.number(1) # is TRUE
#' (x <- seq(-1, 5, by = 0.5))
#' is.natural.number(x)
#' # is.natural.number( "a" )
#' all(is.natural.number(x))
is.natural.number <- function(x, tol = .Machine$double.eps^0.5, ...) {
x > tol & abs(x - round(x)) < tol
}
## Not important enough to include
# all.natural.numbers <- function(x) all(is.natural.number(x)) # check if all the numbers in a vector are natural
# why is this important?
# because it can enable one to check if what we have is a vector of "order"
#' @title cutree for dendrogram (by 1 height only!)
#' @export
#' @description Cuts a dendrogram tree into several groups
#' by specifying the desired cut height (only a single height!).
#' @param dend a dendrogram object
#' @param h numeric scalar (NOT a vector) with a height where the dend should be cut.
#' @param use_labels_not_values logical, defaults to TRUE. If the actual labels of the
#' clusters do not matter - and we want to gain speed (say, 10 times faster) -
#' then use FALSE (gives the "leaves order" instead of their labels.).
#' @param order_clusters_as_data logical, defaults to TRUE. There are two ways by which
#' to order the clusters: 1) By the order of the original data. 2) by the order of the
#' labels in the dendrogram. In order to be consistent with \link[stats]{cutree}, this is set
#' to TRUE.
#' @param warn logical (default from dendextend_options("warn") is FALSE).
#' Set if warning are to be issued, it is safer to keep this at TRUE,
#' but for keeping the noise down, the default is FALSE.
#' @param ... (not currently in use)
#' @return \code{cutree_1h.dendrogram} returns an integer vector with group memberships
#' @author Tal Galili
#' @seealso \code{\link{hclust}}, \code{\link{cutree}}
#' @examples
#' hc <- hclust(dist(USArrests[c(1, 6, 13, 20, 23), ]), "ave")
#' dend <- as.dendrogram(hc)
#' cutree(hc, h = 50) # on hclust
#' cutree_1h.dendrogram(dend, h = 50) # on a dendrogram
#'
#' labels(dend)
#'
#' # the default (ordered by original data's order)
#' cutree_1h.dendrogram(dend, h = 50, order_clusters_as_data = TRUE)
#'
#' # A different order of labels - order by their order in the tree
#' cutree_1h.dendrogram(dend, h = 50, order_clusters_as_data = FALSE)
#'
#'
#' # make it faster
#' \dontrun{
#' library(microbenchmark)
#' microbenchmark(
#' cutree_1h.dendrogram(dend, h = 50),
#' cutree_1h.dendrogram(dend, h = 50, use_labels_not_values = FALSE)
#' )
#' # 0.8 vs 0.6 sec - for 100 runs
#' }
#'
cutree_1h.dendrogram <- function(dend, h,
order_clusters_as_data = TRUE, use_labels_not_values = TRUE,
warn = dendextend_options("warn"), ...) {
if (missing(h)) stop("h is missing")
if (length(h) > 1) {
if (warn) warning("h has length > 1 and only the first element will be used")
h <- h[1]
}
# deal with cases that we cut the dend to all leaves. (negative h)
if (h < 0) {
labels_dend <- labels(dend)
cluster_vec <- 1:length(labels_dend)
names(cluster_vec)[order.dendrogram(dend)] <- labels_dend
return(cluster_vec)
}
if (use_labels_not_values) {
FUN <- labels
} else {
FUN <- order.dendrogram
}
# cut_replace <- function(dend, h, FUN) {
# if(attr(dend, "height") <= h ) return(list(FUN(dend)))
#
# clusters <- list()
# counter <- 1
#
# add_clusters <- function(dend_node)
# {
# if(is.leaf(dend_node)) {
# clusters[[counter]] <<-FUN(dend_node)
# return(NULL)
# }
# for(i in seq(dend_node)) {
# dend_node_child_height <- attr(dend_node[[i]], "height")
# if(dend_node_child_height>h) { # notice I'm using > and not >= (this might be worth checking further)
# if(is.leaf(dend_node[[i]])) {
# clusters[[counter]] <<- FUN(dend_node[[i]])
# } else {
# add_clusters(dend_node[[i]])
# }
# } else { # this node is now a new cluser, hence:
# clusters[[counter]] <<- FUN(dend_node[[i]])
# counter <<- 1 + counter
# }
# }
# return(NULL)
# }
# add_clusters(dend)
# return(clusters)
# }
# an alternatice which is not faster (but may be used in the future for making this into an Rcpp function!)
# names_in_clusters <- cut_replace(dend, h, FUN)
# names_in_clusters <- sapply(cut(dend, h = h)$lower, FUN) # If the proper labels are not important, this function is around 10 times faster than using labels (so it is much better for some other algorithms)
names_in_clusters <- cut_lower_fun(dend, h, FUN) # If the proper labels are not important, this function is around 10 times faster than using labels (so it is much better for some other algorithms)
# Type of output:
# [[1]]
# [1] "Minnesota"
#
# [[2]]
# [1] "Maryland" "Colorado" "Alabama" "Illinois"
number_of_clusters <- length(names_in_clusters)
number_of_members_in_clusters <- sapply(names_in_clusters, length) # a list with item per cluster. each item is a character vector with the names of the items in that cluster
cluster_vec <- rep(rev(seq_len(number_of_clusters)), times = number_of_members_in_clusters) # like in the original cutree
# I am using "rev" on "seq_len" - so that the resulting cluster numbers will be consistant with those of cutree.hclust
# 2011-01-10: this is to fix the "bug" (I don't think it's a feature) of having the cut.dendrogram return splitted tree when h is heigher then the tree...
# now it gives consistent results with cutree
if (h > attr(dend, "height")) cluster_vec <- rep(1L, length(cluster_vec))
names(cluster_vec) <- unlist(names_in_clusters)
# note: The order of the items in cluster_vec, is according to their order in the dendrogram.
# If the dendrogram was created through as.dendrogram(hclust_object)
# The original order of the names of the items, from which the hclust (and the dendrogram) object was created from, will not be preserved!
clusters_order <- order.dendrogram(dend)
if (order_clusters_as_data) {
if (!all(clusters_order %in% seq_along(clusters_order))) {
if (warn) {
warning("rank() was used for the leaves order number! \nExplenation: leaves tip number (the order), and the ranks of these numbers - are not equal.\n The dend was probably subsetted, pruned and/or merged with other dends- and now the order \n labels don't make so much sense (hence, the rank on them was used).")
warning("Here is the cluster order vector (from the dend tips) \n", paste(clusters_order, collapse = ", "), "\n")
}
clusters_order <- rank(clusters_order, ties.method = "first") # we use the "first" ties method - to handle the cases of ties in the ranks (after splits/merges with other dends)
}
cluster_vec <- cluster_vec[order(clusters_order)] # this reorders the cluster_vec according to the original order of the items from which the dend (maybe hclust) was created
}
# 2013-07-28: stay consistant with hclust:
# if we have as many clusters as items - they should be numbered
# from left to right...
dend_size <- nleaves(dend, method = "order")
if (number_of_clusters == dend_size) cluster_vec[seq_len(dend_size)] <- seq_len(dend_size)
return(cluster_vec)
}
#' @title Which height will result in which k for a dendrogram
#' @description Which height will result in which k for a dendrogram.
#' This helps with speeding up the \link{cutree.dendrogram} function.
#' @export
#' @aliases
#' dendextend_heights_per_k.dendrogram
#' @param dend a dendrogram.
#' @param ... not used.
#' @return a vector of heights, with its names being the k clusters that will
#' result for cutting the dendrogram at each height.
#'
#' @examples
#' \dontrun{
#' hc <- hclust(dist(USArrests[1:4, ]), "ave")
#' dend <- as.dendrogram(hc)
#' heights_per_k.dendrogram(dend)
#' ## 1 2 3 4
#' ## 86.47086 68.84745 45.98871 28.36531
#'
#' cutree(hc, h = 68.8) # and indeed we get 2 clusters
#'
#' unbranch_dend <- unbranch(dend, 2)
#' plot(unbranch_dend)
#' heights_per_k.dendrogram(unbranch_dend)
#' # 1 3 4
#' # 97.90023 57.41808 16.93594
#' # we do NOT have a height for k=2 because of the tree's structure.
#'
#' }
heights_per_k.dendrogram <- function(dend, ...) {
# gets a dendro tree
# returns a vector of heights, and the k clusters we'll get for each of them.
our_dend_heights <- sort(unique(get_branches_heights(dend, sort = FALSE)), TRUE)
heights_to_remove_for_A_cut <- min(-diff(our_dend_heights)) / 2 # the height to add so to be sure we get a "clear" cut
heights_to_cut_by <- c(
(max(our_dend_heights) + heights_to_remove_for_A_cut), # adding the height for 1 clusters only (this is not mandetory and could be different or removed)
(our_dend_heights - heights_to_remove_for_A_cut)
)
# names(heights_to_cut_by) <- sapply(heights_to_cut_by, function(h) {length(cut(dend, h = h)$lower)}) # this is the SLOW line - I need to do it differently...
names(heights_to_cut_by) <- sapply(heights_to_cut_by, function(h) {
length(cut(dend, h = h)$lower)
}) # this is the SLOW line - I need to do it differently...
dend_size <- nleaves(dend)
# I use "length(heights_to_cut_by)" for cases when I don't have a height for every possible cut
names(heights_to_cut_by)[length(heights_to_cut_by)] <- as.character(dend_size) # should always be the max...
names(heights_to_cut_by)[1] <- "1" # should always be 1. (the fact that it's currently not is a bug - remove this line once it is fixed)
return(heights_to_cut_by)
# notice we might have certion k's that won't exist in this list!
}
#' @title cutree for dendrogram (by 1 k value only!)
#' @export
#' @description Cuts a dendrogram tree into several groups
#' by specifying the desired number of clusters k (only a single k value!).
#'
#' In case there exists no such k for which exists a relevant split of the
#' dendrogram, a warning is issued to the user, and NA is returned.
#' @param dend a dendrogram object
#' @param k numeric scalar (not a vector!) with the number of clusters
#' the tree should be cut into.
#' @param dend_heights_per_k a named vector that resulted from running.
#' \code{heights_per_k.dendrogram}. When running the function many times,
#' supplying this object will help improve the running time.
#' @param use_labels_not_values logical, defaults to TRUE. If the actual labels of the
#' clusters do not matter - and we want to gain speed (say, 10 times faster) -
#' then use FALSE (gives the "leaves order" instead of their labels.).
#' This is passed to \code{cutree_1h.dendrogram}.
#' @param order_clusters_as_data logical, defaults to TRUE. There are two ways by which
#' to order the clusters: 1) By the order of the original data. 2) by the order of the
#' labels in the dendrogram. In order to be consistent with \link[stats]{cutree}, this is set
#' to TRUE.
#' This is passed to \code{cutree_1h.dendrogram}.
#' @param warn logical (default from dendextend_options("warn") is FALSE).
#' Set if warning are to be issued, it is safer to keep this at TRUE,
#' but for keeping the noise down, the default is FALSE.
#' Should the function send a warning in case the desried k is not available?
#' @param ... (not currently in use)
#' @return \code{cutree_1k.dendrogram} returns an integer vector with group
#' memberships.
#'
#' In case there exists no such k for which exists a relevant split of the
#' dendrogram, a warning is issued to the user, and NA is returned.
#' @author Tal Galili
#' @seealso \code{\link{hclust}}, \code{\link{cutree}},
#' \code{\link{cutree_1h.dendrogram}}
#' @examples
#' hc <- hclust(dist(USArrests[c(1, 6, 13, 20, 23), ]), "ave")
#' dend <- as.dendrogram(hc)
#' cutree(hc, k = 3) # on hclust
#' cutree_1k.dendrogram(dend, k = 3) # on a dendrogram
#'
#' labels(dend)
#'
#' # the default (ordered by original data's order)
#' cutree_1k.dendrogram(dend, k = 3, order_clusters_as_data = TRUE)
#'
#' # A different order of labels - order by their order in the tree
#' cutree_1k.dendrogram(dend, k = 3, order_clusters_as_data = FALSE)
#'
#'
#' # make it faster
#' \dontrun{
#' library(microbenchmark)
#' dend_ks <- heights_per_k.dendrogram
#' microbenchmark(
#' cutree_1k.dendrogram = cutree_1k.dendrogram(dend, k = 4),
#' cutree_1k.dendrogram_no_labels = cutree_1k.dendrogram(dend,
#' k = 4, use_labels_not_values = FALSE
#' ),
#' cutree_1k.dendrogram_no_labels_per_k = cutree_1k.dendrogram(dend,
#' k = 4, use_labels_not_values = FALSE,
#' dend_heights_per_k = dend_ks
#' )
#' )
#' # the last one is the fastest...
#' }
#'
cutree_1k.dendrogram <- function(dend, k,
dend_heights_per_k = NULL,
use_labels_not_values = TRUE,
order_clusters_as_data = TRUE,
warn = dendextend_options("warn"), ...) {
# if(!is.integer(k) && warn) warning("k is not an integer - using k<-as.integer(k)")
k <- as.integer(k) # making this consistant with cutree.hclust!!
# STOPING RULES:
# if k is not natural - stop!
if (!is.natural.number(k)) stop(paste("k must be a natural number! The k you used (", k, ") is not a natural number"))
# if k is "too large" then stop!
if (k > nleaves(dend)) stop(paste("elements of 'k' must be between 1 and", nleaves(dend)))
# if k is 1 - it is trivial to run and return:
if (k == 1L) {
h_to_use <- attr(dend, "height") + 1
cluster_vec <- cutree_1h.dendrogram(dend,
h = h_to_use,
use_labels_not_values = use_labels_not_values,
order_clusters_as_data = order_clusters_as_data,
...
)
return(cluster_vec)
}
# deal with cases that we cut the dend to all leaves. (k == nleaves)
if (k == nleaves(dend)) {
labels_dend <- labels(dend)
cluster_vec <- 1:length(labels_dend)
names(cluster_vec)[order.dendrogram(dend)] <- labels_dend
return(cluster_vec)
}
# step 1: find all possible h cuts for dend
if (is.null(dend_heights_per_k)) {
# since this is a step which takes a long time, If possible, I'd rather supply this to the function, so to make sure it runs faster...
dend_heights_per_k <- heights_per_k.dendrogram(dend)
}
# step 2: Check location in the vector of the height for the k we are interested in
height_for_our_k <- which(names(dend_heights_per_k) == k)
if (length(height_for_our_k) != 0) # if such a height exists
{
h_to_use <- dend_heights_per_k[height_for_our_k]
cluster_vec <- cutree_1h.dendrogram(dend,
h = h_to_use,
use_labels_not_values = use_labels_not_values,
order_clusters_as_data = order_clusters_as_data,
...
)
# if(to_print) print(paste("The dendrogram was cut at height",
# round(h_to_use, 4), "in order to create",k, "clusters."))
} else {
cluster_vec <- rep(NA, nleaves(dend, method = "order"))
# telling the user way he can't use this k
if (warn) {
warning("Couldn't cut the dend - returning NA.")
k_s <- as.numeric(names(dend_heights_per_k))
# either his k is outside the possible options
if (k > max(k_s) || k < min(k_s)) {
range_for_clusters <- paste("[", paste(range(k_s), collapse = "-"), "]", sep = "") # it's always supposed to be between 1 to max number of items (so this could be computed in more efficient ways)
warning(paste("No cut exists for creating", k, "clusters. The possible range for clusters is:", range_for_clusters))
} else {
warning(paste("You (probably) have some branches with equal heights so that there exist no height(h) that can create", k, " clusters"))
}
}
}
return(cluster_vec)
}
#' @title Cut a Tree (Dendrogram/hclust/phylo) into Groups of Data
#' @export
#' @description Cuts a dendrogram tree into several groups
#' by specifying the desired number of clusters k(s), or cut height(s).
#'
#' For \code{hclust.dendrogram} -
#' In case there exists no such k for which exists a relevant split of the
#' dendrogram, a warning is issued to the user, and NA is returned.
#' @rdname cutree-methods
#'
#' @param tree a dendrogram object
#' @param k numeric scalar (OR a vector) with the number of clusters
#' the tree should be cut into.
#' @param h numeric scalar (OR a vector) with a height where the tree
#' should be cut.
#' @param dend_heights_per_k a named vector that resulted from running.
#' \code{heights_per_k.dendrogram}. When running the function many times,
#' supplying this object will help improve the running time if using k!=NULL .
#' @param use_labels_not_values logical, defaults to TRUE. If the actual labels of the
#' clusters do not matter - and we want to gain speed (say, 10 times faster) -
#' then use FALSE (gives the "leaves order" instead of their labels.).
#' This is passed to \code{cutree_1h.dendrogram}.
#' @param order_clusters_as_data logical, defaults to TRUE. There are two ways by which
#' to order the clusters: 1) By the order of the original data. 2) by the order of the
#' labels in the dendrogram. In order to be consistent with \link[stats]{cutree}, this is set
#' to TRUE.
#' This is passed to \code{cutree_1h.dendrogram}.
#' @param warn logical (default from dendextend_options("warn") is FALSE).
#' Set if warning are to be issued, it is safer to keep this at TRUE,
#' but for keeping the noise down, the default is FALSE.
#' Should the function send a warning in case the desried k is not available?
#' @param try_cutree_hclust logical. default is TRUE. Since cutree for hclust is
#' MUCH faster than for dendrogram - cutree.dendrogram will first try to change the
#' dendrogram into an hclust object. If it will fail (for example, with unbranched trees),
#' it will continue using the cutree.dendrogram function.
#' If try_cutree_hclust=FALSE, it will force to use cutree.dendrogram and not
#' cutree.hclust.
#' @param NA_to_0L logical. default is TRUE. When no clusters are possible,
#' Should the function return 0 (TRUE, default), or NA (when set to FALSE).
#' @param ... (not currently in use)
#'
#' @details
#' At least one of k or h must be specified, k overrides h if both are given.
#'
#' as opposed to \link[stats]{cutree} for hclust, \code{cutree.dendrogram} allows the
#' cutting of trees at a given height also for non-ultrametric trees
#' (ultrametric tree == a tree with monotone clustering heights).
#'
#' @return
#'
#' If k or h are scalar - \code{cutree.dendrogram} returns an integer vector with group
#' memberships.
#' Otherwise a matrix with group memberships is returned where each column
#' corresponds to the elements of k or h, respectively
#' (which are also used as column names).
#'
#' In case there exists no such k for which exists a relevant split of the
#' dendrogram, a warning is issued to the user, and NA is returned.
#'
#'
#' @author
#' \code{cutree.dendrogram} was written by Tal Galili.
#' \code{cutree.hclust} is redirecting the function
#' to \link[stats]{cutree} from base R.
#'
#' @seealso \code{\link{hclust}}, \code{\link[stats]{cutree}},
#' \code{\link{cutree_1h.dendrogram}}, \code{\link{cutree_1k.dendrogram}},
#'
#' @examples
#'
#' \dontrun{
#' hc <- hclust(dist(USArrests[c(1, 6, 13, 20, 23), ]), "ave")
#' dend <- as.dendrogram(hc)
#' unbranch_dend <- unbranch(dend, 2)
#'
#' cutree(hc, k = 2:4) # on hclust
#' cutree(dend, k = 2:4) # on dendrogram
#'
#' cutree(hc, k = 2) # on hclust
#' cutree(dend, k = 2) # on dendrogram
#'
#' cutree(dend, h = c(20, 25.5, 50, 170))
#' cutree(hc, h = c(20, 25.5, 50, 170))
#'
#' # the default (ordered by original data's order)
#' cutree(dend, k = 2:3, order_clusters_as_data = FALSE)
#' labels(dend)
#'
#' # as.hclust(unbranch_dend) # ERROR - can not do this...
#' cutree(unbranch_dend, k = 2) # all NA's
#' cutree(unbranch_dend, k = 1:4)
#' cutree(unbranch_dend, h = c(20, 25.5, 50, 170))
#' cutree(dend, h = c(20, 25.5, 50, 170))
#'
#'
#' library(microbenchmark)
#' ## this shows how as.hclust is expensive - but still worth it if possible
#' microbenchmark(
#' cutree(hc, k = 2:4),
#' cutree(as.hclust(dend), k = 2:4),
#' cutree(dend, k = 2:4),
#' cutree(dend, k = 2:4, try_cutree_hclust = FALSE)
#' )
#' # the dendrogram is MUCH slower...
#'
#' # Unit: microseconds
#' ## expr min lq median uq max neval
#' ## cutree(hc, k = 2:4) 91.270 96.589 99.3885 107.5075 338.758 100
#' ## tree(as.hclust(dend),
#' ## k = 2:4) 1701.629 1767.700 1854.4895 2029.1875 8736.591 100
#' ## cutree(dend, k = 2:4) 1807.456 1869.887 1963.3960 2125.2155 5579.705 100
#' ## cutree(dend, k = 2:4,
#' ## try_cutree_hclust = FALSE) 8393.914 8570.852 8755.3490 9686.7930 14194.790 100
#'
#' # and trying to "hclust" is not expensive (which is nice...)
#' microbenchmark(
#' cutree_unbranch_dend = cutree(unbranch_dend, k = 2:4),
#' cutree_unbranch_dend_not_trying_to_hclust =
#' cutree(unbranch_dend, k = 2:4, try_cutree_hclust = FALSE)
#' )
#'
#'
#' ## Unit: milliseconds
#' ## expr min lq median uq max neval
#' ## cutree_unbranch_dend 7.309329 7.428314 7.494107 7.752234 17.59581 100
#' ## cutree_unbranch_dend_not
#' ## _trying_to_hclust 6.945375 7.079198 7.148629 7.577536 16.99780 100
#' ## There were 50 or more warnings (use warnings() to see the first 50)
#'
#' # notice that if cutree can't find clusters for the desired k/h, it will produce 0's instead!
#' # (It will produce a warning though...)
#' # This is a different behaviout than stats::cutree
#' # For example:
#' cutree(as.dendrogram(hclust(dist(c(1, 1, 1, 2, 2)))),
#' k = 5
#' )
#' }
#'
cutree <- function(tree, k = NULL, h = NULL, ...) {
UseMethod("cutree")
}
#' @export
#' @rdname cutree-methods
cutree.default <- function(tree, k = NULL, h = NULL, ...) {
cutree(as.dendrogram(tree), k = k, h = h, ...)
# stop("Function cutree is only available for hclust/dendrogram/phylo objects only.")
}
#' @export
#' @rdname cutree-methods
cutree.hclust <- function(tree, k = NULL, h = NULL,
use_labels_not_values = TRUE, # ignored here...
order_clusters_as_data = TRUE,
warn = dendextend_options("warn"),
NA_to_0L = TRUE, # ignored here...
...) {
sort_cluster_numbers <- TRUE
## Add an important warning before R crashes.
if (warn) {
if (any(is.na(labels(tree)))) {
warning("'tree' has NA's in its labels (e.g: labels(tree)) -
cutree might crash R.
If you used as.hclust on a subset of a dendrogram (e.g: dend[[1]]),
Make sure to first fix the dendrogram's order tips. See:
help('order.dendrogram<-')
for suggestion on how to do that.
(use warn=FALSE if you don't want to see this warning again)
")
# ANSWER <- menu(c("Yes (continue)", "No (stop)"), graphics = FALSE, title = "Are you sure you want to proceed with cutree?")
# if(exists("ANSWER") && ANSWER==2) stop("'cutree' was stopped by the user.")
}
}
clusters <- stats::cutree(tree, k = k, h = h, ...)
if (!order_clusters_as_data) {
if (is.matrix(clusters)) {
clusters <- clusters[tree$order, ]
} else {
clusters <- clusters[tree$order]
}
}
# sort the clusters id
if (sort_cluster_numbers) clusters <- sort_levels_values(clusters, force_integer = TRUE, warn = FALSE)
# we know that cluster id is an integer, so it is fine to use force_integer = TRUE
return(clusters)
}
# ' @S3method cutree phylo
#' @export
#' @rdname cutree-methods
cutree.phylo <- function(tree, k = NULL, h = NULL, ...) {
cutree(as.dendrogram(tree), k = k, h = h, ...)
}
# ' @S3method cutree phylo
#' @export
#' @rdname cutree-methods
cutree.phylo <- function(tree, k = NULL, h = NULL, ...) {
cutree(as.dendrogram(tree), k = k, h = h, ...)
}
# ' @S3method cutree phylo
#' @export
#' @rdname cutree-methods
cutree.agnes <- function(tree, k = NULL, h = NULL, ...) {
cutree(as.dendrogram(tree), k = k, h = h, ...)
}
# stats::cutree
#' @export
#' @rdname cutree-methods
cutree.diana <- function(tree, k = NULL, h = NULL, ...) {
cutree(as.dendrogram(tree), k = k, h = h, ...)
}
# In "cutree.dendrogram" I use "tree" instead of "dend" - in order to stay compatible with stats:cutree
# ' @S3method cutree dendrogram
#' @export
#' @rdname cutree-methods
cutree.dendrogram <- function(tree, k = NULL, h = NULL,
dend_heights_per_k = NULL,
use_labels_not_values = TRUE,
order_clusters_as_data = TRUE,
# sort_cluster_numbers = TRUE,
warn = dendextend_options("warn"),
try_cutree_hclust = TRUE,
NA_to_0L = TRUE,
...) {
sort_cluster_numbers <- TRUE
# warnings and stopping rules:
if (!is.dendrogram(tree)) stop("tree should be of class dendrogram (and for some reason - it is not)")
if (is.null(k) && is.null(h)) stop("Neither k nor h were specified")
if (!is.null(k) && !is.null(h)) {
if (warn) warning("Both k and h were specified - using k as default
(consider using only h or k in order to avoid confusions)")
h <- NULL
}
# If it is possible to use cutree.hclust - we will!
# this would be faster, especially when using k.
# and if it doesn't, we would fall back on our function
if (try_cutree_hclust) {
# Fixed the case when order.dendrogram is not the numbers it should
# Replacing the order tips with their rank. (otherwise, cutree will CRASH R <= 3.0.1)
order_tree <- order.dendrogram(tree)
if (!all(order_tree %in% seq_along(order_tree))) {
if (warn) {
warning("rank() was used for the leaves order number! \nExplenation: leaves tip number (the order), and the ranks of these numbers - are not equal.\n The tree was probably subsetted, pruned and/or merged with other trees- and now the order \n labels don't make so much sense (hence, the rank on them was used).")
warning("Here is the cluster order vector (from the tree tips) \n", paste(order_tree, collapse = ", "), "\n")
}
tree <- rank_order.dendrogram(tree)
# order.dendrogram(tree) <- rank(order_tree, ties.method = "first") # we use the "first" ties method - to handle the cases of ties in the ranks (after splits/merges with other trees)
}
# if we succeed (tryCatch) in turning it into hclust - use it!
# if not - go on with the function.
hclust_tree <- tryCatch(
as.hclust(tree),
error = function(e) FALSE
)
if (is.hclust(hclust_tree)) {
return(cutree(
tree = hclust_tree, k = k, h = h,
order_clusters_as_data = order_clusters_as_data,
# sort_cluster_numbers = sort_cluster_numbers,
...
))
}
}
if (!is.null(k)) {
# cluster_vec <- cutree_1k.dendrogram(tree, k,...) # NO, this would only work for scalars...
if (is.null(dend_heights_per_k)) {
# since this is a step which takes a long time, If possible, I'd rather supply this to the function, so to make sure it runs faster...
dend_heights_per_k <- heights_per_k.dendrogram(tree)
}
cutree_per_k <- function(x, tree, ...) cutree_1k.dendrogram(k = x, dend = tree, ...)
clusters <- sapply(
X = k, FUN = cutree_per_k,
tree = tree,
dend_heights_per_k = dend_heights_per_k,
use_labels_not_values = use_labels_not_values,
order_clusters_as_data = order_clusters_as_data,
warn = warn,
...
)
colnames(clusters) <- k
}
# What to do in case h is supplied
if (!is.null(h)) {
# cluster_vec <- cutree_1h.dendrogram(tree, h,...) # nope...
cutree_per_h <- function(x, tree, ...) cutree_1h.dendrogram(h = x, dend = tree, ...)
clusters <- sapply(
X = h, FUN = cutree_per_h,
tree = tree,
use_labels_not_values = use_labels_not_values,
order_clusters_as_data = order_clusters_as_data,
warn = warn,
...
)
colnames(clusters) <- h
}
# return a vector if h/k are scalars:
if (ncol(clusters) == 1) clusters <- clusters[, 1] # make it NOT a matrix
# sort the clusters id
if (sort_cluster_numbers) clusters <- sort_levels_values(clusters, force_integer = TRUE, warn = FALSE)
# we know that cluster id is an integer, so it is fine to use force_integer = TRUE
if (any(is.na(clusters))) warning("It is impossible to produce a one-to-one cut for the k/h you specidied. 0's have been introduced. Note that this result would be different from R's default cutree output.")
if (NA_to_0L) clusters[is.na(clusters)] <- 0L
return(clusters)
}
# if(FALSE) {
# library(dendextend)
# set.seed(23235)
# ss <- sample(1:150, 10 )
# hc1 <- hclust(dist(iris[ss,-5]), "com")
# dend1 <- as.dendrogram(hc1)
## does not give the same results!
# cutree(dend1, k=2:3, order_clusters_as_data=TRUE, try_cutree_hclust=FALSE, sort_cluster_numbers=FALSE)
## this gives the same results as the default:
# cutree.hclust(as.hclust(dend1), k = 3, order_clusters_as_data=TRUE, sort_cluster_numbers=FALSE)
# stats::cutree(as.hclust(dend1), k = 3)
## but not for dendrogram:
# cutree(dend1, k=3, order_clusters_as_data=TRUE, try_cutree_hclust=FALSE, sort_cluster_numbers=TRUE)
# cutree(dend1, k=3, order_clusters_as_data=TRUE, try_cutree_hclust=FALSE, sort_cluster_numbers=FALSE)
## this gives the same results as the default:
# cutree.hclust(as.hclust(dend1), k = 3, order_clusters_as_data=TRUE, sort_cluster_numbers=TRUE)
# stats::cutree(as.hclust(dend1), k = 3)
# stats::cutree(hc1, k = 3)
# cutree.dendrogram(dend1, k=3, order_clusters_as_data=TRUE, try_cutree_hclust=FALSE,
# sort_cluster_numbers=TRUE)
# }
### TODO:
### possible functions to add:
# ultrametric
# is.ultrametric(as.phylo(as.hclust(dend)))
# is.ultrametric(as.phylo(as.hclust(hang.dendrogram(dend))))
# plot(as.phylo(as.hclust(hang.dendrogram(dend))))
# is.ultrametric(as.phylo(as.hclust(dend, hang = 2)))
# is.binary.tree
## ----------------------
## examples:
# hc <- hclust(dist(USArrests[c(1:3,7,5),]), "ave")
# dhc <- as.dendrogram(hc)
# str(dhc)
# plot(hc)
# cutree(dhc, h = 50)
# cutree.dendrogram(dhc, h = 50)
# cutree.dendrogram(dhc, k = 3) # same output
# cutree.dendrogram(dhc, k = 3,h = 50) # conflicting options - using h as default
# cutree.dendrogram(dhc, k = 10) # handaling the case were k is not a viable number of clusters
## showing another case were k is not an option
# attr(dhc[[2]][[1]], "height") <- 23.2
# attr(dhc[[2]][[2]], "height") <- 23.2
# plot(dhc)
# is.ultrametric(as.phylo(dhc))
# cutree.dendrogram(dhc, k = 4) # handaling the case were k is not a viable number of clusters
# cutree.dendrogram(dhc, k = 3.2) # handaling the case were k is not a viable number of clusters
# heights_per_k.dendrogram(dhc)
|