1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
# Copyright (C) Tal Galili
#
# This file is part of dendextend.
#
# dendextend is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# dendextend is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# http://www.r-project.org/Licenses/
#
#' @title Adjust the order of one dendrogram based on another (using labels)
#' @export
#' @description
#' Takes one dendrogram and adjusts its order leaves valeus based on the order
#' of another dendrogram. The values are matached based on the labels of the
#' two dendrograms.
#'
#' This allows for faster \link{entanglement} running time, since we can be
#' sure that the leaves order is just as using their labels.
#'
#' @param dend_change tree object (dendrogram)
#' @param dend_template tree object (dendrogram)
#' @param check_that_labels_match logical (TRUE). If to check that the labels
#' in the two dendrogram match. (if they do not, the function aborts)
#' @return Returns dend_change after adjusting its order values to
#' be like dend_template.
#' @seealso \link{entanglement} , \link{tanglegram}
#' @examples
#' \dontrun{
#'
#' dend <- USArrests[1:4, ] %>%
#' dist() %>%
#' hclust() %>%
#' as.dendrogram()
#' order.dendrogram(dend) # c(4L, 3L, 1L, 2L)
#'
#' dend_changed <- dend
#' order.dendrogram(dend_changed) <- 1:4
#' order.dendrogram(dend_changed) # c(1:4)
#'
#' # now let's fix the order of the new object to be as it was:
#' dend_changed <- match_order_by_labels(dend_changed, dend)
#' # these two are now the same:
#' order.dendrogram(dend_changed)
#' order.dendrogram(dend)
#' }
match_order_by_labels <- function(dend_change, dend_template, check_that_labels_match = TRUE) {
# let's put the leaves' numbers and labels in two data.frames
# tree_to_change_labels_order <- data.frame(labels = labels(dend_change), values = order.dendrogram(dend_change))
# tree_template_labels_order <- data.frame(labels = labels(dend_template), values = order.dendrogram(dend_template))
tree_to_change_labels <- labels(dend_change)
tree_template_labels <- labels(dend_template)
if (check_that_labels_match) {
if (!identical(sort(tree_to_change_labels), sort(tree_template_labels))) {
stop("labels do not match in both trees. Please make sure to fix the labels names!
(make sure also that the labels of BOTH trees are 'character')")
}
}
tree_template_order <- order.dendrogram(dend_template)
# this gives us how to order y so it would be in the order of x.
# y_to_order_like_x <- c(2,3,1,4)
# y_to_order_like_x[match(c(1:4), y_to_order_like_x)]
# I want to order the numbers in yoav_tree so that they would match the needed order in dans_tree
ss_order_change_leaf_numbers_to_match_template <- match(x = tree_to_change_labels, table = tree_template_labels)
tree_new_leaf_numbers <- tree_template_order[ss_order_change_leaf_numbers_to_match_template]
order.dendrogram(dend_change) <- tree_new_leaf_numbers
return(dend_change)
}
#' @title Adjust the order of one dendrogram based on another (using order)
#' @export
#' @description
#' Takes one dendrogram and adjusts its order leaves valeus based on the order
#' of another dendrogram. The values are matached based on the order of the
#' two dendrograms.
#'
#' This allows for faster \link{entanglement} running time, since we can be
#' sure that the leaves order is just as using their labels.
#'
#' This is a function is FASTER than \link{match_order_by_labels}, but it
#' assumes that the order and the labels of the two trees are matching!!
#'
#' This will allow for a faster calculation of \link{entanglement}.
#'
#' @param dend_change tree object (dendrogram)
#' @param dend_template tree object (dendrogram)
#' @param dend_change_old_order a numeric vector with the order of leaves in
#' dend_change (at least before it was changes for some reason).
#' This is the vector based on which we adjust the new values of dend_change.
#' @param check_that_labels_match logical (FALSE). If to check that the labels
#' in the two dendrogram match. (if they do not, the function aborts)
#' @param check_that_leaves_order_match logical (FALSE). If to check that
#' the order in the two dendrogram match. (if they do not, the function aborts)
#'
#' @return Returns dend_change after adjusting its order values to
#' be like dend_template.
#' @seealso \link{entanglement} , \link{tanglegram},
#' \link{match_order_by_labels}
#' @examples
#' \dontrun{
#'
#' dend <- USArrests[1:4, ] %>%
#' dist() %>%
#' hclust() %>%
#' as.dendrogram()
#' order.dendrogram(dend) # c(4L, 3L, 1L, 2L)
#'
#'
#' # Watch this!
#' dend_changed <- dend
#' dend_changed <- rev(dend_changed)
#' expect_false(identical(order.dendrogram(dend_changed), order.dendrogram(dend)))
#' # we keep the order of dend_change, so that the leaves order are synced
#' # with their labels JUST LIKE dend:
#' old_dend_changed_order <- order.dendrogram(dend_changed)
#' # now we change dend_changed leaves order values:
#' order.dendrogram(dend_changed) <- 1:4
#' # and we can fix them again, based on their old kept leaves order:
#' dend_changed <- match_order_dendrogram_by_old_order(
#' dend_changed, dend,
#' old_dend_changed_order
#' )
#' expect_identical(order.dendrogram(dend_changed), order.dendrogram(dend))
#' }
match_order_dendrogram_by_old_order <- function(dend_change, dend_template,
dend_change_old_order,
check_that_labels_match = FALSE,
check_that_leaves_order_match = FALSE) {
# this function was made to help make entanglement.dendrogram faster.
# But it relies on some important assumptions (otherwise, its results will be nonsense!)
if (check_that_labels_match) { # I am turning this check to FALSE since it takes 0.03 sec from the function (which is a long time when running this function a lot)
if (any(sort(labels(dend_change)) != sort(labels(dend_template)))) stop("labels do not match in both trees. Please make sure to fix the labels names!")
}
if (check_that_leaves_order_match) { # I am turning this check to FALSE since it takes 0.03 sec from the function (which is a long time when running this function a lot)
if (any(sort(order.dendrogram(dend_change)) != sort(order.dendrogram(dend_template)))) stop("order.dendrogram do not match in both trees. Please make sure to fix the labels names!")
}
# if(print_NOTE) cat("NOTE:
# Make sure that the values in dend_change_old_order match the labels of dend1 in the same way
# as the values and labels of the dend_change!
# ")
# let's put the leaves' numbers and labels in two data.frames
# tree_to_change_labels_order <- data.frame(labels = labels(dend_change), values = order.dendrogram(dend_change))
# tree_template_labels_order <- data.frame(labels = labels(dend_template), values = order.dendrogram(dend_template))
tree_to_change_order <- order.dendrogram(dend_change)
tree_template_order <- order.dendrogram(dend_template) # these should be values after some change was done outside the function (and dend_change_old_order are the values before the change)
# this gives us how to order y so it would be in the order of x.
# y_to_order_like_x <- c(2,3,1,4)
# y_to_order_like_x[match(c(1:4), y_to_order_like_x)]
# I want to order the numbers in yoav_tree so that they would match the needed order in dans_tree
ss_order_change_leaf_numbers_to_match_template <- match(x = tree_to_change_order, table = dend_change_old_order)
# ss_order_change_leaf_numbers_to_match_template <- match(x= tree_template_order, table= dend_change_old_order)
# ss_order_change_leaf_numbers_to_match_template <- match(tree_to_change_order, dend_change_old_order)
new_leaves_order <- tree_template_order[ss_order_change_leaf_numbers_to_match_template]
order.dendrogram(dend_change) <- new_leaves_order
return(dend_change)
}
# untangle.dendrogram # A function to take two dendrograms and rotate them so to minimize some penalty on entanglement
# entanglement
#' @title Measures entanglement between two trees
#' @rdname entanglement
#' @export
#' @description
#' Measures the entanglement between two trees.
#' Entanglement is a measure between 1 (full entanglement) and 0
#' (no entanglement). The exact behavior of the number depends on the L norm
#' which is chosen.
#'
#'
#'
#'
#' @param dend1 a tree object (of class dendrogram/hclust/phylo).
#' @param dend2 a tree object (of class dendrogram/hclust/phylo).
#' @param which an integer vector of length 2, indicating
#' which of the trees in a dendlist object should have
#' their entanglement calculated
#' @param L the distance norm to use for measuring the distance between the
#' two trees. It can be any positive number, often one will want to
#' use 0, 1, 1.5, 2 (see 'details' for more).
#' @param leaves_matching_method a character scalar, either "order"
#' or "labels" (default) . If using "labels", then we use the labels for
#' matching the leaves order value (safer).
#'
#' And if "order" then we use the old leaves order value for matching the
#' leaves order value.
#'
#' Using "order" is faster, but "labels" is safer. "order" will assume that
#' the original two trees had their labels and order values MATCHED.
#'
#' Hence, it is best to make sure that the trees used here have the same labels
#' and the SAME values matched to these values - and then use "order" (for
#' fastest results).
#'
#' @param ... not used
#'
#' @details
#'
#' Entanglement is measured by giving the left tree's labels the values of
#' 1 till tree size, and than match these numbers with the right tree.
#' Now, entanglement is the L norm distance between these two vectors.
#' That is, we take the sum of the absolute difference (each one in the power
#' of L). e.g: \code{sum(abs(x-y)^L)}.
#' And this is devided by the "worst case" entanglement level (e.g:
#' when the right tree is the complete reverse of the left tree).
#'
#' L tells us which panelty level we are at (L0, L1, L2, partial L's etc).
#' L>1 means that we give a big panelty for sharp angles.
#' While L->0 means that any time something is not a streight horizontal line,
#' it gets a large penalty
#' If L=0.1 it means that we much prefer streight lines over non streight lines
#'
#' @return The number of leaves in the tree
#' @seealso \link{tanglegram}, \link{match_order_by_labels}.
#' @examples
#'
#' \dontrun{
#' dend1 <- iris[, -5] %>%
#' dist() %>%
#' hclust("com") %>%
#' as.dendrogram()
#' dend2 <- iris[, -5] %>%
#' dist() %>%
#' hclust("sin") %>%
#' as.dendrogram()
#' dend12 <- dendlist(dend1, dend2)
#' tanglegram(dend12)
#'
#' entanglement(dend12)
#' entanglement(dend12, L = 0)
#' entanglement(dend12, L = 0.25)
#' entanglement(dend1, dend2, L = 0) # 1
#' entanglement(dend1, dend2, L = 0.25) # 0.97
#' entanglement(dend1, dend2, L = 1) # 0.93
#' entanglement(dend1, dend2, L = 2) # 0.88
#'
#' # a somewhat better tanglegram
#' tanglegram(sort(dend1), sort(dend2))
#' # and alos a MUCH better entanglement
#' entanglement(sort(dend1), sort(dend2), L = 1.5) # 0.0811
#' # but not that much, for L=0.25
#' entanglement(sort(dend1), sort(dend2), L = .25) # 0.579
#'
#'
#'
#' ##################
#' ##################
#' ##################
#' # massing up the order of leaves is dangerous:
#' entanglement(dend1, dend2, 1.5, "order") # 0.91
#' order.dendrogram(dend2) <- seq_len(nleaves(dend2))
#' # this 0.95 number is NO LONGER correct!!
#' entanglement(dend1, dend2, 1.5, "order") # 0.95
#' # but if we use the "labels" method - we still get the correct number:
#' entanglement(dend1, dend2, 1.5, "labels") # 0.91
#'
#' # however, we can fix our dend2, as follows:
#' dend2 <- match_order_by_labels(dend2, dend1)
#' # Now that labels and order are matched - entanglement is back at working fine:
#' entanglement(dend1, dend2, 1.5, "order") # 0.91
#' }
entanglement <- function(dend1, ...) {
UseMethod("entanglement")
}
#' @export
entanglement.default <- function(dend1, dend2, ...) {
stop("no default function for entanglement")
}
#' @export
#' @rdname entanglement
entanglement.hclust <- function(dend1, dend2, ...) {
dend1 <- as.dendrogram(dend1)
dend2 <- as.dendrogram(dend2)
entanglement(dend1, dend2, ...)
}
#' @export
#' @rdname entanglement
entanglement.phylo <- function(dend1, dend2, ...) {
dend1 <- as.dendrogram(dend1)
dend2 <- as.dendrogram(dend2)
entanglement(dend1, dend2, ...)
}
#' @export
#' @rdname entanglement
entanglement.dendlist <- function(dend1, which = c(1L, 2L), ...) {
# many things can go wrong here (which we might wish to fix):
# we could get a dendlist with a length of 1 - in which case, we can't plot
if (length(dend1) == 1) stop("Your dendlist has only 1 dendrogram - entanglement can not be calculated")
# we could get a dendlist with a length of >2 - in which case, should we only plot the first two items?
if (all(which %in% seq_len(length(dend1)))) {
entanglement.dendrogram(dend1[[which[1]]], dend1[[which[2]]], ...)
} else {
stop("You are trying to calculate the entanglement for trees which are outside the range of trees in your dendlist")
}
}
#' @export
#' @rdname entanglement
entanglement.dendrogram <- function(dend1, dend2, L = 1.5, leaves_matching_method = c("labels", "order"), ...) {
# One day, one might think of other measures of entanglement.
# But for now, we have only one method ("cor.spearman"). Which is the 1-absolute value of the tanks of the values in the two dendrograms.
# A level close to 1 is bad (very entangled). A number close to 0 is good (low entanglement)
# leaves(dend1),leaves(dend2)
# L tells us which panelty level we are at (L0, L1, L2, partial L's etc). L>1 means that we give a big panelty for sharp angles. While L->0 means that any time something is not a streight horizontal line, it gets a large penalty
# If L=0.1 it means that we much prefer streight lines over non streight lines
if (L == 0) L <- L + 1e-50 # this is in order to make sure L is not ==0. Because that would just create nonsical meaning.
n_leaves <- nleaves(dend1) # how many leaves do we have? (number of leaves)
one_to_n_leaves <- seq_len(n_leaves)
leaves_matching_method <- match.arg(leaves_matching_method)
if (leaves_matching_method == "order") {
dend1_old_order <- order.dendrogram(dend1)
order.dendrogram(dend1) <- one_to_n_leaves # change the leaves of dend1 to be 1:n
dend2 <- match_order_dendrogram_by_old_order(dend2, dend1, dend1_old_order)
# make sure that the numbers if the
} else { # "labels" - this method is "safer" (since we can easily see if the labels on the two trees match or not
# however, this is twice as slow (which adds up quite a bit with the functions that rely on this)
# Hence, it is best to make sure that the trees used here have the same labels and the SAME values matched to these values
order.dendrogram(dend1) <- one_to_n_leaves # change the leaves of dend1 to be 1:n
dend2 <- match_order_by_labels(dend2, dend1) # This one is "slow"
}
sum_abs_diff_L <- function(x, y, L) {
sum(abs(x - y)^L)
}
entanglement_result <- sum_abs_diff_L(order.dendrogram(dend1), order.dendrogram(dend2), L)
worse_entanglement_result <- sum_abs_diff_L(one_to_n_leaves, rev(one_to_n_leaves), L)
normalized_entanglement_result <- entanglement_result / worse_entanglement_result # should range between 0 (no etnaglement) and 1 (max entangelment
return(normalized_entanglement_result)
}
# ### OLD entanglement concept.
# entanglement.dendrogram <- function(dend1,dend2 , method = c("absolute.rank.sum", "cor.spearman") )
# {
# # One day, one might think of other measures of entanglement. But for now, we have only one method ("cor.spearman"). Which is the 1-absolute value of the tanks of the values in the two dendrograms.
# # A level close to 1 is bad (very entangled). A number close to 0 is good (low entanglement)
# # leaves(dend1),leaves(dend2)
#
# n_leaves <- nleaves(dend1) # how many leaves do we have? (number of leaves)
# order.dendrogram(dend1) <- seq_len(n_leaves) # change the leaves of dend1 to be 1:n
# dend2 <- match_order_by_labels(dend2 , dend1) # make sure that the numbers if the
#
# if(method[1] == "cor.spearman") {
# order_cor <- cor(order.dendrogram(dend1),order.dendrogram(dend2), method = "spearman")
# entanglement_result <- (1-order_cor)/2 # cor=1 is best (0 entanglement), cor = 0 is bad (0.5 entanglement), cor = -1 is worst (1 entanglament)
# }
# if(method[1] == "absolute.rank.sum") {
# entanglement_result <- sum(abs(order.dendrogram(dend1)-order.dendrogram(dend2)))
# }
#
# entanglement_result
# }
#
# # OLD and SLOW
# entanglement.dendrogram <- function(dend1,dend2, L = 1.5)
# {
# # One day, one might think of other measures of entanglement. But for now, we have only one method ("cor.spearman"). Which is the 1-absolute value of the tanks of the values in the two dendrograms.
# # A level close to 1 is bad (very entangled). A number close to 0 is good (low entanglement)
# # leaves(dend1),leaves(dend2)
# # L tells us which panelty level we are at (L0, L1, L2, partial L's etc). L>1 means that we give a big panelty for sharp angles. While L->0 means that any time something is not a streight horizontal line, it gets a large penalty
# # If L=0.1 it means that we much prefer streight lines over non streight lines
#
# if(L==0) L <- L + 1e-50 # this is in order to make sure L is not ==0. Because that would just create nonsical meaning.
#
#
# n_leaves <- nleaves(dend1) # how many leaves do we have? (number of leaves)
# one_to_n_leaves <- seq_len(n_leaves)
# order.dendrogram(dend1) <- one_to_n_leaves # change the leaves of dend1 to be 1:n
# dend2 <- match_order_by_labels(dend2 , dend1) # make sure that the numbers if the
#
# sum_abs_diff_L <- function(x,y,L) {sum(abs(x-y)^L)}
#
# entanglement_result <- sum_abs_diff_L(order.dendrogram(dend1), order.dendrogram(dend2), L)
# worse_entanglement_result <- sum_abs_diff_L(one_to_n_leaves, rev(one_to_n_leaves), L)
# normalized_entanglement_result <- entanglement_result/worse_entanglement_result # should range between 0 (no etnaglement) and 1 (max entangelment
#
# normalized_entanglement_result
# }
#
#
#
#
#
#
|