File: entanglement.R

package info (click to toggle)
r-cran-dendextend 1.19.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 3,076 kB
  • sloc: sh: 13; makefile: 2
file content (464 lines) | stat: -rw-r--r-- 18,841 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# Copyright (C) Tal Galili
#
# This file is part of dendextend.
#
# dendextend is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# dendextend is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
#  A copy of the GNU General Public License is available at
#  http://www.r-project.org/Licenses/
#











#' @title Adjust the order of one dendrogram based on another (using labels)
#' @export
#' @description
#' Takes one dendrogram and adjusts its order leaves valeus based on the order
#' of another dendrogram. The values are matached based on the labels of the
#' two dendrograms.
#'
#' This allows for faster \link{entanglement} running time, since we can be
#' sure that the leaves order is just as using their labels.
#'
#' @param dend_change tree object (dendrogram)
#' @param dend_template tree object (dendrogram)
#' @param check_that_labels_match logical (TRUE). If to check that the labels
#' in the two dendrogram match. (if they do not, the function aborts)
#' @return Returns dend_change after adjusting its order values to
#'  be like dend_template.
#' @seealso \link{entanglement} , \link{tanglegram}
#' @examples
#' \dontrun{
#'
#' dend <- USArrests[1:4, ] %>%
#'   dist() %>%
#'   hclust() %>%
#'   as.dendrogram()
#' order.dendrogram(dend) #  c(4L, 3L, 1L, 2L)
#'
#' dend_changed <- dend
#' order.dendrogram(dend_changed) <- 1:4
#' order.dendrogram(dend_changed) # c(1:4)
#'
#' # now let's fix the order of the new object to be as it was:
#' dend_changed <- match_order_by_labels(dend_changed, dend)
#' # these two are now the same:
#' order.dendrogram(dend_changed)
#' order.dendrogram(dend)
#' }
match_order_by_labels <- function(dend_change, dend_template, check_that_labels_match = TRUE) {

  # let's put the leaves' numbers and labels in two data.frames
  #    tree_to_change_labels_order <- data.frame(labels = labels(dend_change), values = order.dendrogram(dend_change))
  # 	tree_template_labels_order <- data.frame(labels = labels(dend_template), values = order.dendrogram(dend_template))
  tree_to_change_labels <- labels(dend_change)
  tree_template_labels <- labels(dend_template)

  if (check_that_labels_match) {
    if (!identical(sort(tree_to_change_labels), sort(tree_template_labels))) {
      stop("labels do not match in both trees.  Please make sure to fix the labels names!
(make sure also that the labels of BOTH trees are 'character')")
    }
  }

  tree_template_order <- order.dendrogram(dend_template)

  # this gives us how to order y so it would be in the order of x.
  # y_to_order_like_x <- c(2,3,1,4)
  # y_to_order_like_x[match(c(1:4), y_to_order_like_x)]
  # I want to order the numbers in yoav_tree so that they would match the needed order in dans_tree

  ss_order_change_leaf_numbers_to_match_template <- match(x = tree_to_change_labels, table = tree_template_labels)
  tree_new_leaf_numbers <- tree_template_order[ss_order_change_leaf_numbers_to_match_template]
  order.dendrogram(dend_change) <- tree_new_leaf_numbers

  return(dend_change)
}






#' @title Adjust the order of one dendrogram based on another (using order)
#' @export
#' @description
#' Takes one dendrogram and adjusts its order leaves valeus based on the order
#' of another dendrogram. The values are matached based on the order of the
#' two dendrograms.
#'
#' This allows for faster \link{entanglement} running time, since we can be
#' sure that the leaves order is just as using their labels.
#'
#' This is a function is FASTER than \link{match_order_by_labels}, but it
#' assumes that the order and the labels of the two trees are matching!!
#'
#' This will allow for a faster calculation of \link{entanglement}.
#'
#' @param dend_change tree object (dendrogram)
#' @param dend_template tree object (dendrogram)
#' @param dend_change_old_order a numeric vector with the order of leaves in
#' dend_change (at least before it was changes for some reason).
#' This is the vector based on which we adjust the new values of dend_change.
#' @param check_that_labels_match logical (FALSE). If to check that the labels
#' in the two dendrogram match. (if they do not, the function aborts)
#' @param check_that_leaves_order_match logical (FALSE). If to check that
#' the order in the two dendrogram match. (if they do not, the function aborts)
#'
#' @return Returns dend_change after adjusting its order values to
#'  be like dend_template.
#' @seealso \link{entanglement} , \link{tanglegram},
#' \link{match_order_by_labels}
#' @examples
#' \dontrun{
#'
#' dend <- USArrests[1:4, ] %>%
#'   dist() %>%
#'   hclust() %>%
#'   as.dendrogram()
#' order.dendrogram(dend) #  c(4L, 3L, 1L, 2L)
#'
#'
#' # Watch this!
#' dend_changed <- dend
#' dend_changed <- rev(dend_changed)
#' expect_false(identical(order.dendrogram(dend_changed), order.dendrogram(dend)))
#' # we keep the order of dend_change, so that the leaves order are synced
#' # with their labels JUST LIKE dend:
#' old_dend_changed_order <- order.dendrogram(dend_changed)
#' # now we change dend_changed leaves order values:
#' order.dendrogram(dend_changed) <- 1:4
#' # and we can fix them again, based on their old kept leaves order:
#' dend_changed <- match_order_dendrogram_by_old_order(
#'   dend_changed, dend,
#'   old_dend_changed_order
#' )
#' expect_identical(order.dendrogram(dend_changed), order.dendrogram(dend))
#' }
match_order_dendrogram_by_old_order <- function(dend_change, dend_template,
                                                dend_change_old_order,
                                                check_that_labels_match = FALSE,
                                                check_that_leaves_order_match = FALSE) {

  # this function was made to help make entanglement.dendrogram faster.
  # But it relies on some important assumptions (otherwise, its results will be nonsense!)

  if (check_that_labels_match) { # I am turning this check to FALSE since it takes 0.03 sec from the function (which is a long time when running this function a lot)
    if (any(sort(labels(dend_change)) != sort(labels(dend_template)))) stop("labels do not match in both trees.  Please make sure to fix the labels names!")
  }
  if (check_that_leaves_order_match) { # I am turning this check to FALSE since it takes 0.03 sec from the function (which is a long time when running this function a lot)
    if (any(sort(order.dendrogram(dend_change)) != sort(order.dendrogram(dend_template)))) stop("order.dendrogram do not match in both trees.  Please make sure to fix the labels names!")
  }

  #    if(print_NOTE) cat("NOTE:
  #                       Make sure that the values in dend_change_old_order match the labels of dend1 in the same way
  #                       as the values and labels of the dend_change!
  #                       ")


  # let's put the leaves' numbers and labels in two data.frames
  # 	tree_to_change_labels_order <- data.frame(labels = labels(dend_change), values = order.dendrogram(dend_change))
  # 	tree_template_labels_order <- data.frame(labels = labels(dend_template), values = order.dendrogram(dend_template))
  tree_to_change_order <- order.dendrogram(dend_change)
  tree_template_order <- order.dendrogram(dend_template) # these should be values after some change was done outside the function (and dend_change_old_order are the values before the change)

  # this gives us how to order y so it would be in the order of x.
  # y_to_order_like_x <- c(2,3,1,4)
  # y_to_order_like_x[match(c(1:4), y_to_order_like_x)]
  # I want to order the numbers in yoav_tree so that they would match the needed order in dans_tree

  ss_order_change_leaf_numbers_to_match_template <- match(x = tree_to_change_order, table = dend_change_old_order)
  #    ss_order_change_leaf_numbers_to_match_template <- match(x= tree_template_order, table= dend_change_old_order)
  #    ss_order_change_leaf_numbers_to_match_template <- match(tree_to_change_order, dend_change_old_order)

  new_leaves_order <- tree_template_order[ss_order_change_leaf_numbers_to_match_template]
  order.dendrogram(dend_change) <- new_leaves_order

  return(dend_change)
}













# untangle.dendrogram # A function to take two dendrograms and rotate them so to minimize some penalty on entanglement

# entanglement


#' @title Measures entanglement between two trees
#' @rdname entanglement
#' @export
#' @description
#' Measures the entanglement between two trees.
#' Entanglement is a measure between 1 (full entanglement) and 0
#' (no entanglement). The exact behavior of the number depends on the L norm
#' which is chosen.
#'
#'
#'
#'
#' @param dend1 a tree object (of class dendrogram/hclust/phylo).
#' @param dend2 a tree object (of class dendrogram/hclust/phylo).
#' @param which an integer vector of length 2, indicating
#' which of the trees in a dendlist object should have
#' their entanglement calculated
#' @param L the distance norm to use for measuring the distance between the
#' two trees. It can be any positive number, often one will want to
#'  use 0, 1, 1.5, 2 (see 'details' for more).
#' @param leaves_matching_method a character scalar, either "order"
#' or "labels" (default) . If using "labels", then we use the labels for
#' matching the leaves order value (safer).
#'
#' And if "order" then we use the old leaves order value for matching the
#' leaves order value.
#'
#' Using "order" is faster, but "labels" is safer. "order" will assume that
#' the original two trees had their labels and order values MATCHED.
#'
#' Hence, it is best to make sure that the trees used here have the same labels
#' and the SAME values matched to these values - and then use "order" (for
#' fastest results).
#'
#' @param ... not used
#'
#' @details
#'
#' Entanglement is measured by giving the left tree's labels the values of
#' 1 till tree size, and than match these numbers with the right tree.
#' Now, entanglement is the L norm distance between these two vectors.
#' That is, we take the sum of the absolute difference (each one in the power
#' of L). e.g: \code{sum(abs(x-y)^L)}.
#' And this is devided by the "worst case" entanglement level (e.g:
#' when the right tree is the complete reverse of the left tree).
#'
#' L tells us which panelty level we are at (L0, L1, L2, partial L's etc).
#' L>1 means that we give a big panelty for sharp angles.
#' While L->0 means that any time something is not a streight horizontal line,
#' it gets a large penalty
#' If L=0.1 it means that we much prefer streight lines over non streight lines
#'
#' @return The number of leaves in the tree
#' @seealso \link{tanglegram}, \link{match_order_by_labels}.
#' @examples
#'
#' \dontrun{
#' dend1 <- iris[, -5] %>%
#'   dist() %>%
#'   hclust("com") %>%
#'   as.dendrogram()
#' dend2 <- iris[, -5] %>%
#'   dist() %>%
#'   hclust("sin") %>%
#'   as.dendrogram()
#' dend12 <- dendlist(dend1, dend2)
#' tanglegram(dend12)
#'
#' entanglement(dend12)
#' entanglement(dend12, L = 0)
#' entanglement(dend12, L = 0.25)
#' entanglement(dend1, dend2, L = 0) # 1
#' entanglement(dend1, dend2, L = 0.25) # 0.97
#' entanglement(dend1, dend2, L = 1) # 0.93
#' entanglement(dend1, dend2, L = 2) # 0.88
#'
#' # a somewhat better tanglegram
#' tanglegram(sort(dend1), sort(dend2))
#' # and alos a MUCH better entanglement
#' entanglement(sort(dend1), sort(dend2), L = 1.5) # 0.0811
#' # but not that much, for L=0.25
#' entanglement(sort(dend1), sort(dend2), L = .25) # 0.579
#'
#'
#'
#' ##################
#' ##################
#' ##################
#' # massing up the order of leaves is dangerous:
#' entanglement(dend1, dend2, 1.5, "order") # 0.91
#' order.dendrogram(dend2) <- seq_len(nleaves(dend2))
#' # this 0.95 number is NO LONGER correct!!
#' entanglement(dend1, dend2, 1.5, "order") # 0.95
#' # but if we use the "labels" method - we still get the correct number:
#' entanglement(dend1, dend2, 1.5, "labels") # 0.91
#'
#' # however, we can fix our dend2, as follows:
#' dend2 <- match_order_by_labels(dend2, dend1)
#' # Now that labels and order are matched - entanglement is back at working fine:
#' entanglement(dend1, dend2, 1.5, "order") # 0.91
#' }
entanglement <- function(dend1, ...) {
  UseMethod("entanglement")
}


#' @export
entanglement.default <- function(dend1, dend2, ...) {
  stop("no default function for entanglement")
}


#' @export
#' @rdname entanglement
entanglement.hclust <- function(dend1, dend2, ...) {
  dend1 <- as.dendrogram(dend1)
  dend2 <- as.dendrogram(dend2)
  entanglement(dend1, dend2, ...)
}

#' @export
#' @rdname entanglement
entanglement.phylo <- function(dend1, dend2, ...) {
  dend1 <- as.dendrogram(dend1)
  dend2 <- as.dendrogram(dend2)
  entanglement(dend1, dend2, ...)
}


#' @export
#' @rdname entanglement
entanglement.dendlist <- function(dend1, which = c(1L, 2L), ...) {
  # many things can go wrong here (which we might wish to fix):
  # we could get a dendlist with a length of 1 - in which case, we can't plot
  if (length(dend1) == 1) stop("Your dendlist has only 1 dendrogram - entanglement can not be calculated")
  # we could get a dendlist with a length of >2 - in which case, should we only plot the first two items?
  if (all(which %in% seq_len(length(dend1)))) {
    entanglement.dendrogram(dend1[[which[1]]], dend1[[which[2]]], ...)
  } else {
    stop("You are trying to calculate the entanglement for trees which are outside the range of trees in your dendlist")
  }
}


#' @export
#' @rdname entanglement
entanglement.dendrogram <- function(dend1, dend2, L = 1.5, leaves_matching_method = c("labels", "order"), ...) {
  # One day, one might think of other measures of entanglement.
  # But for now, we have only one method ("cor.spearman").  Which is the 1-absolute value of the tanks of the values in the two dendrograms.
  # A level close to 1 is bad (very entangled).  A number close to 0 is good (low entanglement)
  # leaves(dend1),leaves(dend2)
  # L tells us which panelty level we are at (L0, L1, L2, partial L's etc).  L>1 means that we give a big panelty for sharp angles.  While L->0 means that any time something is not a streight horizontal line, it gets a large penalty
  # If L=0.1 it means that we much prefer streight lines over non streight lines

  if (L == 0) L <- L + 1e-50 # this is in order to make sure L is not ==0.  Because that would just create nonsical meaning.


  n_leaves <- nleaves(dend1) # how many leaves do we have? (number of leaves)
  one_to_n_leaves <- seq_len(n_leaves)

  leaves_matching_method <- match.arg(leaves_matching_method)
  if (leaves_matching_method == "order") {
    dend1_old_order <- order.dendrogram(dend1)
    order.dendrogram(dend1) <- one_to_n_leaves # change the leaves of dend1 to be 1:n
    dend2 <- match_order_dendrogram_by_old_order(dend2, dend1, dend1_old_order)
    # make sure that the numbers if the
  } else { # "labels" - this method is "safer" (since we can easily see if the labels on the two trees match or not
    # however, this is twice as slow (which adds up quite a bit with the functions that rely on this)
    # Hence, it is best to make sure that the trees used here have the same labels and the SAME values matched to these values
    order.dendrogram(dend1) <- one_to_n_leaves # change the leaves of dend1 to be 1:n
    dend2 <- match_order_by_labels(dend2, dend1) # This one is "slow"
  }

  sum_abs_diff_L <- function(x, y, L) {
    sum(abs(x - y)^L)
  }

  entanglement_result <- sum_abs_diff_L(order.dendrogram(dend1), order.dendrogram(dend2), L)
  worse_entanglement_result <- sum_abs_diff_L(one_to_n_leaves, rev(one_to_n_leaves), L)
  normalized_entanglement_result <- entanglement_result / worse_entanglement_result # should range between 0 (no etnaglement) and 1 (max entangelment

  return(normalized_entanglement_result)
}










# ### OLD entanglement concept.
# entanglement.dendrogram <- function(dend1,dend2 , method = c("absolute.rank.sum", "cor.spearman") )
# {
# 	# One day, one might think of other measures of entanglement.  But for now, we have only one method ("cor.spearman").  Which is the 1-absolute value of the tanks of the values in the two dendrograms.
# 	# A level close to 1 is bad (very entangled).  A number close to 0 is good (low entanglement)
# 	# leaves(dend1),leaves(dend2)
#
# 	n_leaves <- nleaves(dend1) # how many leaves do we have? (number of leaves)
# 	order.dendrogram(dend1) <- seq_len(n_leaves) # change the leaves of dend1 to be 1:n
# 	dend2 <- match_order_by_labels(dend2	, dend1) # make sure that the numbers if the
#
# 	if(method[1] == "cor.spearman") {
# 		order_cor <- cor(order.dendrogram(dend1),order.dendrogram(dend2), method = "spearman")
# 		entanglement_result <- (1-order_cor)/2 # cor=1 is best (0 entanglement), cor = 0 is bad (0.5 entanglement), cor = -1 is worst (1 entanglament)
# 	}
# 	if(method[1] == "absolute.rank.sum") {
# 		entanglement_result <- sum(abs(order.dendrogram(dend1)-order.dendrogram(dend2)))
# 	}
#
# 	entanglement_result
# }






#
# # OLD and SLOW
# entanglement.dendrogram <- function(dend1,dend2, L = 1.5)
# {
#    # One day, one might think of other measures of entanglement.  But for now, we have only one method ("cor.spearman").  Which is the 1-absolute value of the tanks of the values in the two dendrograms.
#    # A level close to 1 is bad (very entangled).  A number close to 0 is good (low entanglement)
#    # leaves(dend1),leaves(dend2)
#    # L tells us which panelty level we are at (L0, L1, L2, partial L's etc).  L>1 means that we give a big panelty for sharp angles.  While L->0 means that any time something is not a streight horizontal line, it gets a large penalty
#    # If L=0.1 it means that we much prefer streight lines over non streight lines
#
#    if(L==0) L <- L + 1e-50 # this is in order to make sure L is not ==0.  Because that would just create nonsical meaning.
#
#
#    n_leaves <- nleaves(dend1) # how many leaves do we have? (number of leaves)
#    one_to_n_leaves <- seq_len(n_leaves)
#    order.dendrogram(dend1) <- one_to_n_leaves # change the leaves of dend1 to be 1:n
#    dend2 <- match_order_by_labels(dend2	, dend1) # make sure that the numbers if the
#
#    sum_abs_diff_L <- function(x,y,L) {sum(abs(x-y)^L)}
#
#    entanglement_result <- sum_abs_diff_L(order.dendrogram(dend1), order.dendrogram(dend2), L)
#    worse_entanglement_result <- sum_abs_diff_L(one_to_n_leaves, rev(one_to_n_leaves), L)
#    normalized_entanglement_result <- entanglement_result/worse_entanglement_result # should range between 0 (no etnaglement) and 1 (max entangelment
#
#    normalized_entanglement_result
# }
#
#
#
#
#
#