1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
|
# Copyright (C) Tal Galili
#
# This file is part of dendextend.
#
# dendextend is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# dendextend is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# http://www.r-project.org/Licenses/
#
#' @title Last Observation Carried Forward
#' @export
#' @description
#' A function for replacing each NA with the most recent non-NA prior to it.
#' @param x some vector
#' @param first_na_value If the first observation is NA, fill it with "first_na_value"
#' @param recursive logical (TRUE). Should na_locf be re-run until all NA values are filled?
#' @param ... ignored.
#' @return
#' The original vector, but with all the missing values filled by the value
#' before them.
#' @seealso
#' \link[zoo]{na.locf}
#'
#' @source
#' \url{https://stat.ethz.ch/pipermail/r-help/2003-November/042126.html}
#' \url{https://stackoverflow.com/questions/5302049/last-observation-carried-forward-na-locf-on-panel-cross-section-time-series}
#'
#' This could probably be solved MUCH faster using Rcpp.
#'
#' @examples
#' na_locf(c(NA, NA))
#' na_locf(c(1, NA))
#' na_locf(c(1, NA, NA, NA))
#' na_locf(c(1, NA, NA, NA, 2, 2, NA, 3, NA, 4))
#' na_locf(c(1, NA, NA, NA, 2, 2, NA, 3, NA, 4), recursive = FALSE)
#' \dontrun{
#'
#' # library(microbenchmark)
#' # library(zoo)
#'
#' # microbenchmark(
#' # na_locf = na_locf(c(1, NA, NA, NA, 2, 2, NA, 3, NA, 4)),
#' # na.locf = na.locf(c(1, NA, NA, NA, 2, 2, NA, 3, NA, 4))
#' #) # my implementation is 6 times faster :)
#'
#' #microbenchmark(
#' # na_locf = na_locf(rep(c(1, NA, NA, NA, 2, 2, NA, 3, NA, 4), 1000)),
#' # na.locf = na.locf(rep(c(1, NA, NA, NA, 2, 2, NA, 3, NA, 4), 1000))
#' # ) # my implementation is 3 times faster
#'
#' }
#'
na_locf <- function(x, first_na_value = 0, recursive = TRUE, ...) {
# where are the NA's:
x_na <- is.na(x)
# IF we have no NA's, return x:
if (!any(x_na)) {
return(x)
# Else - fill one next observation:
} else {
# If the first observation is NA, fill it with "first_na_value"
if (x_na[1]) x[1] <- first_na_value
x_na[1] <- FALSE
x_na_loc <- which(x_na)
x[x_na_loc] <- x[x_na_loc - 1]
if (recursive) {
Recall(x)
} else {
return(x)
}
}
}
# str(result)
# class(result)
# result %>% as.dendrogram %>% plot
#' @export
as.hclust.pvclust <- function(x, ...) {
# library(pvclust)
x[["hclust"]]
}
#' @export
as.dendrogram.pvclust <- function(object, ...) {
# library(pvclust)
as.dendrogram(as.hclust(object))
}
# Imported from:
# pvclust:::hc2axes
# pvclust:::hc2axes(result[["hclust"]])
hc2axes <- function(x) {
A <- x$merge
n <- nrow(A) + 1
x.axis <- c()
y.axis <- x$height
x.tmp <- rep(0, 2)
zz <- match(1:length(x$order), x$order)
for (i in 1:(n - 1)) {
ai <- A[i, 1]
if (ai < 0) {
x.tmp[1] <- zz[-ai]
} else {
x.tmp[1] <- x.axis[ai]
}
ai <- A[i, 2]
if (ai < 0) {
x.tmp[2] <- zz[-ai]
} else {
x.tmp[2] <- x.axis[ai]
}
x.axis[i] <- mean(x.tmp)
}
return(data.frame(x.axis = x.axis, y.axis = y.axis, stringsAsFactors = TRUE))
}
# Imported from:
# pvclust:::hc2split
# pvclust:::hc2split(result[["hclust"]])
hc2split <- function(x) {
A <- x$merge
n <- nrow(A) + 1
B <- list()
for (i in 1:(n - 1)) {
ai <- A[i, 1]
if (ai < 0) {
B[[i]] <- -ai
} else {
B[[i]] <- B[[ai]]
}
ai <- A[i, 2]
if (ai < 0) {
B[[i]] <- sort(c(B[[i]], -ai))
} else {
B[[i]] <- sort(c(B[[i]], B[[ai]]))
}
}
CC <- matrix(rep(0, n * (n - 1)), nrow = (n - 1), ncol = n)
for (i in 1:(n - 1)) {
bi <- B[[i]]
m <- length(bi)
for (j in 1:m) CC[i, bi[j]] <- 1
}
split <- list(
pattern = apply(CC, 1, paste, collapse = ""),
member = B
)
return(split)
}
# Imported from:
# pvclust:::text.pvclust
#' @export
text.pvclust <- function(x, col = c(2, 3, 8), print.num = TRUE, float = 0.01,
cex = NULL, font = NULL, ...) {
# library(pvclust)
axes <- hc2axes(x$hclust)
usr <- par()$usr
wid <- usr[4] - usr[3]
au <- as.character(round(x$edges[, "au"] * 100))
bp <- as.character(round(x$edges[, "bp"] * 100))
rn <- as.character(row.names(x$edges))
au[length(au)] <- "au"
bp[length(bp)] <- "bp"
rn[length(rn)] <- "edge #"
a <- text(
x = axes[, 1], y = axes[, 2] + float * wid, au,
col = col[1], pos = 2, offset = 0.3, cex = cex, font = font
)
a <- text(
x = axes[, 1], y = axes[, 2] + float * wid, bp,
col = col[2], pos = 4, offset = 0.3, cex = cex, font = font
)
if (print.num) {
a <- text(
x = axes[, 1], y = axes[, 2], rn, col = col[3],
pos = 1, offset = 0.3, cex = cex, font = font
)
}
}
#' @title The significant branches in a dendrogram, based on a pvclust object
#' @description Shows the significant branches in a dendrogram, based on a pvclust object
#' @export
#' @param dend a dendrogram object
#' @param pvclust_obj a pvclust object
#' @param signif_type a character scalar (either "bp" or "au"), indicating
#' which of the two should be used to update the dendrogram.
#' @param alpha a number between 0 to 1, default is .05. Indicates what is the
#' cutoff from which branches will be updated.
#' @param signif_value a 2d vector (deafult: c(5,1)),
#' with the first element tells us what the significant branches will get,
#' and the second element which value the non-significant branches will get.
#' @param show_type a character scalar (either "lwd" or "col"), indicating
#' which parameter of the branches should be updated based on significance.
#' @param ... not used
#' @return
#' A dendrogram with updated branches
#' @seealso \link{pvclust_show_signif}, \link{pvclust_show_signif_gradient}
#'
#' @examples
#' \dontrun{
#' library(pvclust)
#' data(lung) # 916 genes for 73 subjects
#' set.seed(13134)
#' result <- pvclust(lung[, 1:20], method.dist = "cor", method.hclust = "average", nboot = 100)
#'
#' dend <- as.dendrogram(result)
#' result %>%
#' as.dendrogram() %>%
#' hang.dendrogram() %>%
#' plot(main = "Cluster dendrogram with AU/BP values (%)")
#' result %>% text()
#' result %>% pvrect(alpha = 0.95)
#'
#' dend %>%
#' pvclust_show_signif(result) %>%
#' plot()
#' dend %>%
#' pvclust_show_signif(result, show_type = "lwd") %>%
#' plot()
#' result %>% text()
#' result %>% pvrect(alpha = 0.95)
#'
#' dend %>%
#' pvclust_show_signif_gradient(result) %>%
#' plot()
#'
#' dend %>%
#' pvclust_show_signif_gradient(result) %>%
#' pvclust_show_signif(result) %>%
#' plot(main = "Cluster dendrogram with AU/BP values (%)\n bp values are highlighted by signif")
#' result %>% text()
#' result %>% pvrect(alpha = 0.95)
#' }
pvclust_show_signif <- function(dend, pvclust_obj, signif_type = c("bp", "au"), alpha = .05, signif_value = c(5, 1), show_type = c("lwd", "col"), ...) {
# these two are sorted from node number 1 to nnodes.
# result$edges$au
# result$edges$bp
signif_type <- match.arg(signif_type)
show_type <- match.arg(show_type)
pvalue_per_node <- pvclust_obj$edges[[signif_type]]
ord <- rank(get_branches_heights(dend, sort = FALSE))
pvalue_per_node <- pvalue_per_node[ord]
# Well, it is not exactly p-value. At elast, it is 1-Pv. And I am not yet sure of that...
# plot, but ignore the leaves:
# nnodes(dend)-nleaves(dend) # number of branches nodes
signif_TF <- pvalue_per_node > (1 - alpha)
signif_TF[1] <- FALSE
show_signif_TF <- ifelse(signif_TF, signif_value[1], signif_value[2])
show_signif_TF_with_leaves <- rep(NA, nnodes(dend))
ss_leaf <- which_leaf(dend)
show_signif_TF_with_leaves[!ss_leaf] <- show_signif_TF
show_signif_TF_with_leaves <- na_locf(show_signif_TF_with_leaves)
assign_values_to_branches_edgePar(dend, show_signif_TF_with_leaves, show_type) # %>% plot
}
#' @title Significance gradient of branches in a dendrogram (via pvclust)
#' @description Shows the gradient of significance of branches in a dendrogram, based on a pvclust object
#' @export
#' @param dend a dendrogram object
#' @param pvclust_obj a pvclust object
#' @param signif_type a character scalar (either "bp" or "au"), indicating
#' which of the two should be used to update the dendrogram.
#' @param signif_col_fun a function to create colors for the significant
#' gradient. Default is: colorRampPalette(c("black", "darkred", "red"))
#' @param ... not used
#' @return
#' A dendrogram with updated branches
#' @seealso \link{pvclust_show_signif}, \link{pvclust_show_signif_gradient}
#'
#' @examples
#' \dontrun{
#' library(pvclust)
#' data(lung) # 916 genes for 73 subjects
#' set.seed(13134)
#' result <- pvclust(lung[, 1:20], method.dist = "cor", method.hclust = "average", nboot = 100)
#'
#' dend <- as.dendrogram(result)
#' result %>%
#' as.dendrogram() %>%
#' hang.dendrogram() %>%
#' plot(main = "Cluster dendrogram with AU/BP values (%)")
#' result %>% text()
#' result %>% pvrect(alpha = 0.95)
#'
#' dend %>%
#' pvclust_show_signif(result) %>%
#' plot()
#' dend %>%
#' pvclust_show_signif(result, show_type = "lwd") %>%
#' plot()
#' result %>% text()
#' result %>% pvrect(alpha = 0.95)
#'
#' dend %>%
#' pvclust_show_signif_gradient(result) %>%
#' plot()
#'
#' dend %>%
#' pvclust_show_signif_gradient(result) %>%
#' pvclust_show_signif(result) %>%
#' plot(main = "Cluster dendrogram with AU/BP values (%)\n bp values are highlighted by signif")
#' result %>% text()
#' result %>% pvrect(alpha = 0.95)
#' }
pvclust_show_signif_gradient <- function(dend, pvclust_obj, signif_type = c("bp", "au"), signif_col_fun = colorRampPalette(c("black", "darkred", "red")), ...) {
# these two are sorted from node number 1 to nnodes.
# result$edges$au
# result$edges$bp
signif_type <- match.arg(signif_type)
pvalue_per_node <- pvclust_obj$edges[[signif_type]]
ord <- rank(get_branches_heights(dend, sort = FALSE))
pvalue_per_node <- pvalue_per_node[ord]
# Well, it is not exactly p-value. At elast, it is 1-Pv. And I am not yet sure of that...
# plot, but ignore the leaves:
# nnodes(dend)-nleaves(dend) # number of branches nodes
signif_col <- signif_col_fun(100)
# plot(1:100, col = signif_col, pch = 19)
#
#
pvalue_by_all_nodes <- rep(NA, nnodes(dend))
ss_leaf <- which_leaf(dend)
pvalue_by_all_nodes[!ss_leaf] <- pvalue_per_node
pvalue_by_all_nodes <- na_locf(pvalue_by_all_nodes)
#
the_cols <- signif_col[round(pvalue_by_all_nodes * 100)]
assign_values_to_branches_edgePar(dend, the_cols, "col") # %>% plot
}
##################################
#### Required functions
##################################
# Based on:
# https://stat.ethz.ch/pipermail/r-help/2007-November/145106.html
# strheight for rotated text
strheight2 <- function(s, ...) {
xusr <- par("usr")
xh <- strwidth(s, cex = par("cex"), ...)
yh <- strheight(s, cex = par("cex"), ...) * 5 / 3
tmp <- xh
xh <- yh / (xusr[4] - xusr[3]) * par("pin")[2]
xh <- xh / par("pin")[1] * (xusr[2] - xusr[1])
yh <- tmp / (xusr[2] - xusr[1]) * par("pin")[1]
yh <- yh / par("pin")[2] * (xusr[4] - xusr[3])
yh
}
# strwidth for rotated text
strwidth2 <- function(s, ...) {
xusr <- par("usr")
xh <- strwidth(s, cex = par("cex"), ...)
yh <- strheight(s, cex = par("cex"), ...) * 5 / 3
tmp <- xh
xh <- yh / (xusr[4] - xusr[3]) * par("pin")[2]
xh <- xh / par("pin")[1] * (xusr[2] - xusr[1])
yh <- tmp / (xusr[2] - xusr[1]) * par("pin")[1]
yh <- yh / par("pin")[2] * (xusr[4] - xusr[3])
xh
}
# http://r-posts.com/adding-sinew-to-roxygen2-skeletons/
# sinew::makeOxygen(pvrect2)
#' @title Draw Rectangles Around a Dendrogram's Clusters with High/Low P-values
#' @export
#' @description
#' Draws rectangles around the branches of a dendrogram highlighting the corresponding clusters with low p-values.
#' This is based on \link[pvclust]{pvrect}, allowing to draw the rects till the bottom of the labels.
#' @param x object of class pvclust.
#' @param alpha threshold value for p-values., Default: 0.95
#' @param pv character string which specifies the p-value to be used. It should be either of "au" or "bp", corresponding to AU p-value or BP value, respectively. See plot.pvclust for details. , Default: 'au'
#' @param type one of "geq", "leq", "gt" or "lt". If "geq" is specified, clusters with p-value greater than or equals the threshold given by "alpha" are returned or displayed. Likewise "leq" stands for lower than or equals, "gt" for greater than and "lt" for lower than the threshold value. The default is "geq"., Default: 'geq'
#' @param max.only logical. If some of clusters with high/low p-values have inclusion relation, only the largest cluster is returned (or displayed) when max.only=TRUE., Default: TRUE
#' @param border numeric value which specifies the color of borders of rectangles., Default: 2
#' @param xpd A logical value (or NA.), passed to par. Default is TRUE, in order to allow the rect to be below the labels. If FALSE, all plotting is clipped to the plot region, if TRUE, all plotting is clipped to the figure region, and if NA, all plotting is clipped to the device region. See also clip., Default: TRUE
#' @param lower_rect a (scalar) value of how low should the lower part of the rect be. If missing, it will take the value of par("usr")[3L] (or par("usr")[2L], depending if horiz = TRUE or not), with also the width of the labels. (notice that we would like to keep xpd = TRUE if we want the rect to be after the labels!) You can use a value such as 0, to get the rect above the labels.
#' @param ... passed to \link{rect}
#' @return NULL
#' @seealso
#' \link[pvclust]{pvrect}, \link{pvclust_show_signif}
#' @examples
#' \dontrun{
#'
#'
#' library(dendextend)
#' library(pvclust)
#' data(lung) # 916 genes for 73 subjects
#' set.seed(13134)
#' result <- pvclust(lung[, 1:20], method.dist = "cor", method.hclust = "average", nboot = 10)
#'
#' par(mar = c(9, 2.5, 2, 0))
#' dend <- as.dendrogram(result)
#' dend %>%
#' pvclust_show_signif(result, signif_value = c(3, .5)) %>%
#' pvclust_show_signif(result, signif_value = c("black", "grey"), show_type = "col") %>%
#' plot(main = "Cluster dendrogram with AU/BP values (%)")
#' pvrect2(result, alpha = 0.95)
#' # getting the rects to the tips / above the labels
#' pvrect2(result, lower_rect = .15, border = 4, alpha = 0.95, lty = 2)
#' # Original function
#' # pvrect(result, alpha=0.95)
#' text(result, alpha = 0.95)
#' }
#'
pvrect2 <- function(x, alpha = 0.95, pv = "au", type = "geq", max.only = TRUE,
border = 2,
xpd = TRUE, lower_rect,
...) {
dend <- as.dendrogram(x)
len <- nrow(x$edges)
member <- hc2split(x$hclust)$member
order <- x$hclust$order
usr <- par("usr")
xwd <- usr[2] - usr[1]
ywd <- usr[4] - usr[3]
cin <- par()$cin
ht <- c()
j <- 1
if (is.na(pm <- pmatch(type, c("geq", "leq", "gt", "lt")))) {
stop("Invalid type argument: see help(pvrect)")
}
old_xpd <- par()["xpd"]
par(xpd = xpd)
for (i in (len - 1):1) {
if (pm == 1) {
wh <- (x$edges[i, pv] >= alpha)
} else if (pm == 2) {
wh <- (x$edges[i, pv] <= alpha)
} else if (pm == 3) {
wh <- (x$edges[i, pv] > alpha)
} else if (pm == 4) {
wh <- (x$edges[i, pv] > alpha)
}
if (wh) {
mi <- member[[i]]
ma <- match(mi, order)
if (max.only == FALSE || (max.only && sum(match(ma,
ht,
nomatch = 0
)) == 0)) {
xl <- min(ma)
xr <- max(ma)
yt <- x$hclust$height[i]
yb <- usr[3]
mx <- xwd / length(member) / 3
my <- ywd / 200
# if(missing(lower_rect)) lower_rect <- par("usr")[3L] - strwidth("W")*(max(nchar(labels(dend))) + 1)
if (missing(lower_rect)) lower_rect <- -max(strheight2(labels(dend)))
dLeaf <- -0.75 * strheight("x")
extra_space <- -strheight2("_")
rect(xl - mx,
# 0,
lower_rect + dLeaf + extra_space,
# yb + my + lower_rect,
xr + mx, yt + my,
border = border,
shade = NULL, ...
)
j <- j + 1
}
ht <- c(ht, ma)
}
}
par(xpd = old_xpd)
invisible()
}
# !is.infinite(Inf)
#
#
# show_signif_bp_with_leaves <- rep(NA, nnodes(dend))
# ss_leaf <- which_leaf(dend)
# show_signif_bp_with_leaves[!ss_leaf] <- show_signif_bp
# show_signif_bp_with_leaves <- na_locf(show_signif_bp_with_leaves)
#
# assign_values_to_branches_edgePar(dend, show_signif_bp_with_leaves, "lwd") %>% plot
# pvclust:::text.pvclust(result)
# pvrect(result, alpha=0.95,pv = "bp")
#
# signif_col_fun <- colorRampPalette(c("black", "darkred", "red"))
# signif_col <- signif_col_fun(100)
# plot(1:100, col = signif_col, pch = 19)
#
#
# bp_by_all_nodes <- rep(NA, nnodes(dend))
# ss_leaf <- which_leaf(dend)
# bp_by_all_nodes[!ss_leaf] <- bp_by_nodes
# bp_by_all_nodes <- na_locf(bp_by_all_nodes)
#
# the_cols <- signif_col[round(bp_by_all_nodes*100)]
# dend %>%
# assign_values_to_branches_edgePar(the_cols, "col") %>%
# assign_values_to_branches_edgePar(show_signif_bp_with_leaves, "lwd") %>%
# plot
# pvclust:::text.pvclust(result)
# pvrect(result, alpha=0.95,pv = "bp")
#
#
#
#
# if(F) {
#
#
# # # require2(pvclust, F)
# #
# #
# library(dendextend)
#
#
#
# plot(result)
# pvrect(result, alpha=0.95)
#
# # pvclust:::plot.pvclust
# # pvclust:::text.pvclust
#
# # reproduce:
# hc <- result[[1]]
# plot(hc)
# pvclust:::text.pvclust(result)
# pvrect(result, alpha=0.95)
#
# # reproduce with a dendrogram:
# dend <- as.dendrogram(hc)
# dend %>% hang.dendrogram %>% plot
# pvclust:::text.pvclust(result)
# pvrect(result, alpha=0.95)
#
# # str(result)
#
# # Reproduce with a dendrogram, but with information in the branches!):
#
# # these two are sorted from node number 1 to nnodes.
# result$edges$au
# result$edges$bp
# get_branches_heights(dend, sort = FALSE)
# ord <- rank(get_branches_heights(dend, sort = FALSE))
# au_by_nodes <- result$edges$au[ord]
# bp_by_nodes <- result$edges$bp[ord]
#
# # plot, but ignore the leaves:
# nnodes(dend)-nleaves(dend) # number of branches nodes
# alpha <- .05
# signif_bp <- bp_by_nodes > (1-alpha)
# signif_bp[1] <- FALSE
# show_signif_bp <- ifelse(signif_bp, 5, 1)
# assign_values_to_branches_edgePar(dend, show_signif_bp, "lwd", skip_leaves = TRUE) %>% plot
# pvclust:::text.pvclust(result)
# pvrect(result, alpha=0.95,pv = "bp")
#
#
# # Let's do it again, but include the leaves this time!
#
# show_signif_bp_with_leaves <- rep(NA, nnodes(dend))
# ss_leaf <- which_leaf(dend)
# show_signif_bp_with_leaves[!ss_leaf] <- show_signif_bp
# show_signif_bp_with_leaves <- na_locf(show_signif_bp_with_leaves)
#
# assign_values_to_branches_edgePar(dend, show_signif_bp_with_leaves, "lwd") %>% plot
# pvclust:::text.pvclust(result)
# pvrect(result, alpha=0.95,pv = "bp")
#
# signif_col_fun <- colorRampPalette(c("black", "darkred", "red"))
# signif_col <- signif_col_fun(100)
# plot(1:100, col = signif_col, pch = 19)
#
#
# bp_by_all_nodes <- rep(NA, nnodes(dend))
# ss_leaf <- which_leaf(dend)
# bp_by_all_nodes[!ss_leaf] <- bp_by_nodes
# bp_by_all_nodes <- na_locf(bp_by_all_nodes)
#
# the_cols <- signif_col[round(bp_by_all_nodes*100)]
# dend %>%
# assign_values_to_branches_edgePar(the_cols, "col") %>%
# assign_values_to_branches_edgePar(show_signif_bp_with_leaves, "lwd") %>%
# plot
# pvclust:::text.pvclust(result)
# pvrect(result, alpha=0.95,pv = "bp")
#
#
#
#
# #
#
#
#
#
#
#
#
# # it numbers the nodes from 1 to nnodes, so that 1 is the lowest node, the next one is after it
# # and so on. This numbering is interesting. This is something that can be
# # manually added to a dend. (as extra attr), or just tracked
# #
# # it saves a vector
#
# get_branches_heights(dend, sort = FALSE)
#
# # after pvclust - we can get the values and use them!
#
#
#
#
# # http://course.sdu.edu.cn/G2S/eWebEditor/uploadfile/20130605012427559.pdf
# # http://scholar.google.co.il/scholar?cites=3917689774873650154&as_sdt=2005&sciodt=0,5&hl=en
# # http://www.is.titech.ac.jp/~shimo/pub/Shimodaira%20and%20Hasegawa%20MBE1999.pdf
# # http://scholar.google.co.il/scholar?hl=en&q=Ryota+Suzuki+&btnG=&as_sdt=1%2C5&as_sdtp=
# # http://www.is.titech.ac.jp/~shimo/prog/pvclust/
# # https://cran.r-project.org/package=pvclust
#
# }
#
#' @title Get Pvclust Edges Information
#' @export
#' @description
#' Get pvclust edges information such as au and bp and return dataframe with proper sample labels.
#' This function is useful when there are a lot of samples involved.
#'
#' @param pvclust_obj pvclust object
#' @return data.frame with leaves on column 1 and 2, followed by the rest of the information from edge
#' @references hclust object descriptions \url{https://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html}
#'
#' @examples
#' \dontrun{
#'
#' library(pvclust)
#' data(lung) # 916 genes for 73 subjects
#' set.seed(13134)
#' result <- pvclust(lung[, 1:20], method.dist = "cor", method.hclust = "average", nboot = 100)
#' pvclust_edges(result)
#' }
pvclust_edges <- function(pvclust_obj) {
hclust_merge <- pvclust_obj$hclust$merge
hclust_merge[hclust_merge < 0] <- pvclust_obj$hclust$labels[abs(hclust_merge[hclust_merge < 0])] # get sample name
hclust_merge <- cbind(hclust_merge, pvclust_obj$edges) # combine with edge table
colnames(hclust_merge)[1:2] <- c("branch_L", "branch_R")
return(hclust_merge)
}
|