File: densityClust-package.Rd

package info (click to toggle)
r-cran-densityclust 0.3.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 280 kB
  • sloc: cpp: 175; sh: 12; makefile: 2
file content (62 lines) | stat: -rw-r--r-- 2,520 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/densityClust-package.R
\docType{package}
\name{densityClust-package}
\alias{densityClust-package}
\title{Clustering by fast search and find of density peaks}
\description{
This package implement the clustering algorithm described by Alex Rodriguez
and Alessandro Laio (2014). It provides the user with tools for generating
the initial rho and delta values for each observation as well as using these
to assign observations to clusters. This is done in two passes so the user is
free to reassign observations to clusters using a new set of rho and delta
thresholds, without needing to recalculate everything.
}
\section{Plotting}{

Two types of plots are supported by this package, and both mimics the types of
plots used in the publication for the algorithm. The standard plot function
produces a decision plot, with optional colouring of cluster peaks if these
are assigned. Furthermore \code{\link[=plotMDS]{plotMDS()}} performs a multidimensional
scaling of the distance matrix and plots this as a scatterplot. If clusters
are assigned observations are coloured according to their assignment.
}

\section{Cluster detection}{

The two main functions for this package are \code{\link[=densityClust]{densityClust()}} and
\code{\link[=findClusters]{findClusters()}}. The former takes a distance matrix and optionally
a distance cutoff and calculates rho and delta for each observation. The
latter takes the output of \code{\link[=densityClust]{densityClust()}} and make cluster
assignment for each observation based on a user defined rho and delta
threshold. If the thresholds are not specified the user is able to supply
them interactively by clicking on a decision plot.
}

\examples{
irisDist <- dist(iris[,1:4])
irisClust <- densityClust(irisDist, gaussian=TRUE)
plot(irisClust) # Inspect clustering attributes to define thresholds

irisClust <- findClusters(irisClust, rho=2, delta=2)
plotMDS(irisClust)
split(iris[,5], irisClust$clusters)

}
\references{
Rodriguez, A., & Laio, A. (2014). \emph{Clustering by fast search and find of density peaks.} Science, \strong{344}(6191), 1492-1496. doi:10.1126/science.1242072
}
\seealso{
\code{\link[=densityClust]{densityClust()}}, \code{\link[=findClusters]{findClusters()}}, \code{\link[=plotMDS]{plotMDS()}}
}
\author{
\strong{Maintainer}: Thomas Lin Pedersen \email{thomasp85@gmail.com}

Authors:
\itemize{
  \item Sean Hughes
  \item Xiaojie Qiu \email{xqiu@uw.edu}
}

}
\keyword{internal}